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Abstract: The thesis relates to some recent development in the theory of ordered exponential fields
and transfinite series and mainly aims to extend some results, by Berarducci, Mantova, Kuhlmann and
Matusinski, [2], on the interplay between the existence of an isomorphism from the additive reduct of
a field to its group of values and the possibility to define an analytic exponential structure in the case
of κ-bounded Hahn fields.
In particular we answer, in the affirmative, to the question whether or not the value group of the field
of logarithmic exponential transseries is isomorphic to the additive reduct of the field itself. In the
process we also give an isomorphism theorem for such value group.
Also, a way of constructing analytic subfields from an ideal in the poset of subgroups of a monomial
group, is described, thus generalizing the notion of κ-bounded Hahn field; some properties of the con-
struction are then discussed.

Summary/Introduction: Consider an extension of ordered fields k ⊆ K: the group of k-relative
archimedean classes of K can be regarded as the quotient of the positive cone K>0 by the multiplica-
tive subgroup given by the convex span of the positive cone k>0 of k, or equivalently as the value group
for a valuation whose valuation ring is the subring of k-finite elements, that is, elements bounded in
absolute value by some element of k.
A group of monomials M ⊆ K>0, for K relative to k is defined as a section of this quotient (more
precisely the image of such a section).
The field K can then be seen, although not canonically or uniquely, as a subfield of the Hahn Field
k((M)) with coefficients from k and monomials form M via a suitable version of Hahn’s Embedding
Theorem.
It is thus natural to try to study extensions of k arising as subfields of k((G)) with G some multiplicative
group: the restriction to proper subfields is also actually necessary in order to have an exponential
structure because of a theorem by Shelah and Khulmann.

In order to exploit some of the properties of Hahn fields, one further restricts the study to what in
[2] is called an analytic subfield K ⊆ k((G)), these are fields closed by truncation and power series of
infinitesimal elements: they clearly come with a canonical valuation with value group G whose k-finite
elements are given by K ∩ k((G≤1)).
On such structures a natural question is whether they admit a well behaved log-exp structure: the
condition to be required, motivated by the examples of surreal numbers and logarithmic exponential
transseries (from now on, LE-transseries), is that they satisfy the usual series expansion on infinitesi-
mal elements and that they define an ordered abelian group isomorphism between the additive group
of k-relative purely infinite elements (i.e. those that are sums only of infinite monomials) and the
multiplicative group of monomials. Such condition, defined in [2] is expressed saying that the log-exp
structure is analytic. Both the Surreal Numbers and LE-transseries, when regarded as analytic sub-
fields of the Hahn field with coefficients from R and monomial group their classical groups of monomials
in the usual way, and endowed with the usual logarithms and exponentials as defined respectively in
[6] and e.g. [9], are examples of analytic subfield with an analytic log-exp structure.

Surreal Numbers are an ordered exponential class field first introduced by Conway [5] to represent
strength positions in some games: they have since become an independent object of study after the
discovery (Gonshor, [6]) that they can be endowed with an exponential and a logarithm. It has also
been shown recently that they admit a differential structure and that they are connected with LE
Transseries (cfr Berarducci and Mantova, [3] and [4]).

The field of LE-Transseries on the other hand is an exponential field with a differential and has been
an object of interest ever since their use via the notion accelero-summation in problems of asymptotic
analysis and in Ecale’s solution of Dulac’s problem.

Now the class of surreal numbers No, is also endowed with an ordered abelian group isomorphism
ω defined by Conway in [5], between its additive reduct (No,+) and the multiplicative group of its
monomials. It turns out that this is closely related to the definition of an exponential: in fact, for
surreal numbers the definition of exponential came later than that of omega maps.
The idea of Berarducci, Khulmann, Mantova and Matusinski in [2] was to generalize this to analytic
subfields and study the relation between the existence of an isomorphism from the additive reduct
of the field and its value group (briefly an ω map) and the possibility to define analytic logarithms
and exponentials: in particular they mainly investigate analytic subfields of the form k((G))κ ⊆ k((G))
consisting only of sums with support of cardinality less then some regular cardinal κ. Such kind of

2



fields, although quite general and somehow resembling the field of transseries, does not technically
specialize to the latter.
This left the question whether the field of logarithmic exponential transseries admits an ω map with
respect to the natural valuation whose valuation ring consists of R-finite elements and the usual analytic
subfield structure.
It worths saying that although transseries can be embedded into the field of surreal numbers No (as
shown in [4]), it happens however that such embeddings define subfields of No that are not in general
closed with respect to Conway’s classical ω.
The modest main new result of our work is to show that it is possible to define an omega map on
transseries:

Theorem 0.1. The Archimedean valuation group of the field of logarithmic exponential transseries is
isomorphic to the additive reduct of the field itself.

Along the way we also give a way of constructing analytic subfields starting from some additional
data such as an order ideal in the poset of subroups of a group of monomials, thus generalizing the
notion of κ-bounded Hahn field studied in [2], and give some properties of this construction.
The presentation is structured as follows: after an introduction of the main concepts and the above
mentioned construction, we proceed with the abstract definition of transseries and the proof of the
main result together with a structure theorem for their value group:

Theorem 0.2. The value group MEL of transseries decomposes in a multiplicative lexicographic direct
sum of Z isomorphic copies of a same group N, and the corresponding valuation associated with the
decomposition mathces the classical notion of level. Moreover the multiplicative group N is isomorphic
to the additive reduct of the field of transseries with level below some fixed integer.

Thereafter we present surreal numbers giving a thorough review of their basic theory, finally we
describe the embedding of LE-transseries into them with the aim to discuss the relation between the
ω map on surreals an the newly defined ω-map.
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Chapter 1

Preliminaries and notations

1.1 Generalities over Hahn Powers
Definition 1.1. Let (Γ, <) be a chain and (A,+, 0, <) an ordered abelian group, we define the Hahn
power to be the ordered abelian group

(
A((Γ)),+, 0, <) supported on the set of functions f : S(f) →

A \ {0} for some set S(f) ⊆ Γ which is well ordered w.r.t. to the opposite order >, that is s.t. every
nonempty subset of S(f) has a maximum.

A((Γ)) =
{
f ∈ (A \ {0})S : S ⊆ Γ, (S,>) well ordered

}
Define the coefficient of the monomial m ∈ Γ in f as fm(

(f,m) 7→ fm
)

: A((Γ))× Γ→ A fm =

{
f(m) if m ∈ S(f)

0 if m /∈ S(f)

We also let lm(f) = max S(f), lc(f) = alm(f) and lt(f) = lm(f)lt(f), be respectively the leading term,
coefficient and term of f .
The sum is defined as the only function •+ • : A((Γ))×A((Γ))→ A((Γ)) such that (f + g)m = fm + gm,
we see that S(f + g) ⊆ S(f) ∪ S(g).
The order is given by stating that f > 0⇔ lc(f) > 0.
An indexed family {xi ∈ A((Γ)) : i ∈ I} is said to be summable if

⋃
{S(f) : f ∈ F} is reverse well

ordered and for every m ∈ Γ the set {i ∈ I : m ∈ S(fi)} is finite. In such a case one can define the sum
of the family

∑
i∈I fi as the only element in A((Γ)) s.t.(∑

i∈I
fi

)
m

=
∑
i∈I

m∈S(fi)

(fi)m

Remark 1.2. To every element m ∈ Γ we can associate an element of A((Γ)) with support {m} and
value at m, 1. We denote such an element still by m; with such an identification Γ ⊆ R((Γ)) and the
inclusion is an ordered group homomorphism from (Γ, ·, <, 1) to the multiplicative subgroup of R((Γ))
given by its the positive cone.

Remark 1.3. The notion of summability and sum of a summable family are invariant by permutation
of the indexing set I. Moreover every element of A((Γ)) can be written as

f =
∑

m∈S(f)

fmm

Another usual operation on Hahn powers is truncation

Definition 1.4. Given f ∈ A((Γ)) and m ∈ Γ one defines the truncation of f at m as f |m =
f |S(f)∩(m,∞).  ∑

n∈S(f)

fnn

∣∣∣∣∣∣
m

=
∑

n∈S(f)
n>m

fnn

Remark 1.5. Truncation is additive and defines a weakly increasing group homomorphism

•
∣∣
m

: A((Γ))→ A
((

[m,∞)
))

hence its kernel is the order convex subgroup A
((

(−∞, γ)
))
.
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1.1.1 Hahn Fields
If instead of A we start with a field K and an ordered abelian group G then K((G)) is also naturally a
field.1
In order to state the definition of product we will need a lemma which will also come in handy later
throughout this section

Lemma 1.6. Let (A,<,+, 0) be a totally ordered abelian group. If S ⊆ A is a well ordered subset,
then for every couple of sequences (an)n∈N, (bn)n∈N ∈ SN such that an+1 + bn+1 ≤ an + bn for every
n ∈ N one has that there are n < m s.t. an = am and bn = bm.

Proof. Since S is well ordered there is a strictly increasing sequence of natural numbers (in)n∈N such
that ain ≤ ain+1

: choose i0 so that ai0 = min{ai : i ∈ N} then inductively let in+1 be such that
ain+1 = min{ak : k > in}. Analogously extracting a subsequence from (in)n∈N we end up with a
strictly increasing (jn)n∈N such that for every n one has ajn ≤ ajn+1 and bjn ≤ bjn+1 , now it easily
follows from ajn+1

+ bjn+1
≤ ajn + bjn that ajn + bjn = ajn+1

= bjn+1
.

As a consequence of this one gets that if S is well ordered (or reverse well ordered), then an element
of S + S can be written in at most a finite number of ways. In our case for a fixed n ∈ G and two
reverse well ordered subsets M , L of G, the set {(m, l) ∈ M × L : m · l = n} is finite, one can thus
define the product as the only function such that

(f · g)n =
∑
l∈S(f)
m∈S(g)
m·l=n

flgl

in a very similar fashion to Cauchy product of power series. We explicitly note that S(f ·g) ⊆ S(f)·S(g).

Fact 1.7. If K is an ordered field and G is a group then K((G)) is an ordered ring with the product
definition given above, moreover the product is distributive w.r.t. to infinite sums, that is to say, if
{fi : i ∈ I} and {gj : j ∈ J} are summable families then {figj : i ∈ I, j ∈ J} is a summable family and(∑

i∈I
fi

)∑
j∈J

gi

 =
∑
i∈I
j∈J

figj

In order to prove the existence of the inverse one usually makes use of the following fundamental
result, which together with the fact above follows from Lemma 1.6

Lemma 1.8 (Neumann). If x ∈ K((G<1)), then {xn : n ∈ N} is a summable family, in particular for
every

{
kn : n ∈ N \ {1}

}
defines a function K((G<1))→ K((G<1))

x 7→
∑
n∈N

knx
n

Corollary 1.9. If K is an ordered field and G is a group then K((G)) is an ordered field.

Proof. Every element f ∈ K((G)) can be written as

f = gk(1 + x) g = lm(f) ∈ G, k = lc(f) ∈ K, x = (g−1)f − k ∈ K((G<1))

then one can check that g−1k−1

1 +
∑
n≥1

(−x)n

 is an inverse.

Lemma 1.10. Let E be a subfield of K((G)) and assume ∆ ⊆ K((G)) is a subset such that be a subset
such that for every reverse well order S ⊆ ∆ and every S-indexed family {es ∈ K : s ∈ S} of elements
of E one has that {ess : s ∈ S} is a summable family in K((G)), then there is one and only one map
E((∆))→ K((G)) that sends each formal sum∑

i<α

eiδi ∈ E((∆)) α ∈ On, ∀i < j, δi > δi

in the same (well defined by hypothesis) infinite sum done in K((G)).
1In general one could start with a ring and a linearly ordered monoid and get a ring.
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A sufficient condition for E and ∆ to satisfy the condition above is that said L = S(E) =
⋃
{S(e) :

e ∈ E}, one has that for every δ, γ ∈ ∆ with δ < γ one has that S(δ)L < S(γ)L = ∅: a more specific and
useful condition is that ∆ ⊆ H ⊆ G is contained in a subgroup of monomials H ⊆ G and E < H>1.
For future reference we isolate this in the following

Fact 1.11. Let E ⊆ K((G)) a subfield and H ⊆ G a sugroup such that H>1 ≤ E, then there is a unique
embedding E((H)) ↪→ K((G)) agreeing with the inclusions of E and H and preserving infinite sums.

Notation: If A,B are groups whose operation si written by some symbol ∗ we use A©? B to deonte the

direct product . If we are talking about ordered groups
<
� deontes the a lexicographic direct product

where the leftmost factor “weights” less:

(a, b) > 0 ⇐⇒ (b > 0) or (b = 0 & a > 0)

We extend this to the case of infinite products, if Γ is a chain and (Aγ , ·, 1, <) is a Γ indexed family
of groups

⊙
γ∈Γ

Aγ is the multiplicative direct sum (only sums with fintie support), to be considered wit

the lexicographic order
x =

⊙
γ∈S(x)

aγ > 0⇐⇒ amax S(x) > 0

Corollary 1.12. There is an isomoprhism K((H1

<
�H2)) ∼= K((H1))((H2)), natural in all arguments.

Proof. There is an inclusion K((H1)) ⊆ K((H1

<
�H2)), and H>1

2 > K((H1)), one can then apply the Fact

above and get a map K((H1))((H2))→ K((H1

<
�H2)), this can be seen to be an isomorphism.

1.1.2 Hahn Powers as a Functor
The Hahn powers (and Hahn field) constructions have a functorial nature, that is, given an injective
map of chains (or groups) between sets monomials and an injective map of abelian groups (or a field
embedding) one can define a corresponding map between the Hahn powers or Hahn fields.

Definition 1.13. If α : Γ → ∆ is an injective chain morphism and f : K → E is a field embedding,
the we can define

f((α)) : K((Γ))→ E((∆)) f((α))
∑
i∈λ

riγi =
∑
i∈λ

f(ri)α(γi)

If α : Γ→ ∆ is also an injective ordered group morphism, then one can check f((α)) is a field embedding.

Fact 1.14. The construction f((α)) is functorial. Given Γ
α
↪→ ∆

β
↪→ E and K

f
↪→ E

g
↪→ F, we have that

g ◦ f((β ◦ α)) = g((β)) ◦ f((α)) : K((Γ))→ F((E))

Notation: Since we are gonna study the functor •((•)) and related constructions, we will deal mainly
with the following categories:

• the category ChainsI consisting of total orders and strictly increasing chains

• the category OAbGrpsI of linearly ordered abelian groups and strictly increasing group homo-
morphisms

• the category OFields of ordered fields end increasing field embeddings

These are all left-cancellative categories in that all morphisms are monic, also they have all (small)
filtered colimits 2.

2By filtered colimits we mean a colimit of a functor from a filtered category. A category C is filtered if for every finite
category I and every diagram F : I → C there is a cocone for F , that is an object c and a natural transformation F ⇒ c.
If C is a poset-category, i.e. has as objects elements of a poset and morphisms the elements of the order relation, then C
is filtered if and only it is a directed poset. We will deal mainly with this latter case, in which case the colimit is usually
referred to as directed limit.
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Definition 1.15. Denote by •((•)) the following functor

(K,Γ)

(f,α)

��

(E,∆)

7→

K((Γ))

f((α))

��

E((∆))

both seen as OFields× ChainsI → OAbGrpsI or as OFields×OAbGrpsI → OFields.
Also denote by K((•)) : ChainsI → OrderedKVectorSpaces the apporpriate “restriction” of the compo-
sition •((•)) ◦ (K, •) where (K, •) : ChainsI → OFields× ChainsI .

1.1.3 Hahn Powers and directed colimits
In what follows we will deal with directed colimits (unions) of chains, groups and fields so we need to
study the behavior of the functor •((•)) w.r.t. to directed colimits. This is actually quite simple: let D be
directed set and Γd, Kd increasing families of chains with

⋃
{Γd : d ∈ D} = Γ and

⋃
{Kd : d ∈ D} = K

then Kd((Γd)) ⊆ K((Γ)) for every d ∈ D and⋃
d∈D

Kd((Γd)) ⊆ K((Γ))

corresponds to those Hahn sums
∑
i<α kiγi for which there is a d ∈ D such that {ki : i < α} ⊆ Kd and

{γi : i < α} ⊆ Γ. We make this formal in the following:

Lemma 1.16. Let D be a directed poset and (K,C) : D → OrderedFields×ChainsI a diagram. Then
there is a natural embedding

η = ηK,C : lim−→K
((
C
))
↪→
(

lim−→K
) ((

lim−→C
))

and the image consists only of the Hahn sums of the form∑
i∈α

ϕd(ki)γd(ci)

for some d ∈ D, where
ϕd : K(d)→ lim−→K γd : C(d)→ lim−→C

are the cocone maps of the direct limit.

Proof. Let ϕ
((
γ
))
d

: K(d)
((
C(d)

))
→ lim−→K

((
C
))

denote the cocone map of the direct limit. Just define
η as the only map such that

η ◦ ϕ
((
γ
))
d

= ϕd
((
γd
))

the characterization of the image is then straightforward.

1.1.4 Bound strutures
In order to control the behavior of •((•)) we introduce what we could call a bound structure: we want
to encode some additional data in chains, groups or fields that allow us to remember how an object in
this categories was obtained as a filtered colimit.
The goal is to obtain categories CB, with C ∈ {ChainsI ,OAbGrpsI ,OFields} (or a product of these
categories) containing C via a fully faithful embedding and to extend the functor •((•)) in such a way
that it preserves directed colimits.
The idea would be to consider filtered structures, that is objects in C endowed with with a filtration:
we could endow every object X of C with a directed family of substructures {Xd : d ∈ D}, with
D = (D,<) a directed poset, Cd ⊆ Cd′ for every d′ < d and X =

⋃
{Xd : d ∈ D}. Then one could

extend •((•)) as (
K =

⋃
d∈D

Kd,Γ =
⋃
d∈D

Γd

)
7→
⋃
d∈D

Kd
((

Γd
))
⊆ K

((
Γ
))

then given another filtered object

(
L =

⋃
e∈E

Le,∆ =
⋃
e∈E

∆e

)
, a map (f, α) : (K,Γ)→ (L,∆) induces

a map
f((α)) :

⋃
d∈D

Kd
((

Γd
))
−→

⋃
e∈E

Ee
((

∆e

))
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if and only if it is filtration bounded, that is there is an increasing “bound” function b : D → E such
that (f, α)(Kd,Γd) ⊆ (Eb(d),∆b(d)).
It would be then natural to define CB as the category of filtered objects of C and filtration bounded
maps. With such definition we have that two filtrations⋃

d∈D

Xd = X =
⋃
e∈E

Xe

will define isomorphic objects in CB if and only if the two filtrations {Xd : d ∈ D} and {Xe : e ∈ E}
are mutually cofinal. It is thus more convenient to define objects in CB as objects of C endowed with
an equivalence class of filtrations modulo mutual cofinality: now the fact is that such an equivalence
class will have a “maximal” element (with respect to the relation {Xd : d ∈ D} ⊆ {Xe : e ∈ E}), such
maximal element is actually an ideal in the poset of substructures of X.

We could give an ad hoc construction for the three categories ChainsI ,OAbGrpsI ,OFields, though
it may be funny to generalize this. In order to do it we need two things: a notion of subobject and a
notion of image of a subobject, the first is general in category theory, the second requires us to be able
to factor maps f : X → Y as X e→ Y ′

m→ Y where m is a monomorphism and the decomposition to
have some good properties.

We thus start recalling the following

Definition 1.17. Let C be a category and X an object therein, a subobject3 Y ⊆ X is an equivalence
class of monomorphisms Y

y
↪→ X w.r.t. to the equivalence relation stating y : Y ↪→ X and y′ : Y ′ ↪→ X

are equivalent if there is an isomorphism α : Y
∼→ Y ′ such that y = y′ ◦α. An order relation is defined

on the class4 of subobjects of X, PX , stating that Y ⊆ Y ′ if y factors through y′, that is there is a
α : Y → Y ′ (not necessarily an isomorphism) such that y = y′ ◦ α.

Definition 1.18. An orthogonal factorization system5 for C is a couple (L,R) of classes of morphism
in C such that

• both L and R contain all isomorphisms;

• every arrow f in C factors as f = m ◦ e, with m ∈ R and e ∈ L;

• the factorization is functorial, that is, for every couple of arrows u, v, and m,m′ ∈ R, e, e′ ∈ L,
such that v ◦m ◦ e = m′ ◦ e′ ◦ u, there is one and only one arrow w such that v ◦m = m′ ◦w and
w ◦ e = u ◦ e′

a
e //

u

��

b

∃!w
��

m // c

v

��

a′
e′ // b′

m′ // c′

• the following “strong” lifting property holds: given m ∈ R and e ∈ L and two other arrows u, v
such that v ◦ e = m ◦ u, there is one and only one w such that w ◦ e = u and m ◦ w = v.

a

e

��

u // b

m

��

a′
v //

∃!w

??

b′

Remark 1.19. The strong lifting property implies that a factorization f = m ◦ e is unique up to a
unique isomorphism.

Example 1.20. In Set one has an orthogonal factorization system (L,R) where L is the class of
epimorphisms and R that of monomorphisms.

Definition 1.21. Let C be a category and (L,R) an orthogonal factorization system, such that R is
the class of monomorphisms.
Let f : X → Y be an arrow in C, and Z = [(ι : dom(ι) ↪→ X)]∼ a subobject of X, then we define the

3cfr [7], pp. 126-129 “Subobjects and generators”.
4 in our case such a class will always be a set, a cateogry for which this happens is called well-powered cateogry.
5 cfr [11], Section 1 “Orthogonal Factorization Systems”, pp. 1-6
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image of Z by f as the class f∗(Z) = [m]∼ of a m ∈ R such that f ◦ ι = m ◦ e, e ∈ E . One can verify
that this is independent both from the choice of the representative ι of Z and from the choice of the
decomposition functor f = m ◦ e.
f∗ : PX → PY is order preserving, moreover (f ◦ g)∗ = f∗ ◦ g∗.

Definition 1.22. Let C be a category with an orthogonal factorization system (L,R) with R the class
of monomorphisms.
Given X an object in C, we call bound structure on X a cofinal ideal B in the poset PX of subobjects
of X. We call the couple X = (X,BX), a B-object of C and say that a subobject X ′ ⊆ X is bounded
if X ′ ∈ BX . If C has a concrete structure, we say that a subset of X is bounded if it is contained into
some bounded substructure.
Given two B-objects of C, (X,BX), (Y,BY ) we say that a map f : X → Y is bounded if the image6 of
a bounded subobject X ′ ∈ BX is bounded f∗(X) ∈ BY , that is f∗(BX) ⊆ BY . Again if the category
has a concrete structure it is equivalent to saying that the image of a bounded subset is bounded.
Given two bound structure BX and BX′ on the same object X = X ′ we say that BX is coarser than
BX′ or that BX′ is finer than BX if and only if BX ⊆ BX′ , this is the same as saying that idX : X → X ′

is a bounded map.
Denote by CB the category of B-objects of C and bounded maps between them.

Example 1.23. If X is an object in Set then a B-structure on X is just a cofinal ideal of parts
BX ⊆ P(X), and cofinality just translates into the condition that

⋃
BX = X.

Example 1.24. IfX is an object in OAbGrpsI then a BX would be an ideal in the poset of subgroups of
BX . OAbGrpsI has an obvious concrete structure given by the forgetful functor F : OAbGrpsI → Set,
and a subset is just a subset in the obvious sense: it is bounded if it is contained into some subgroup
in BX .
We remark that a B-structure on X as a group is not the same as a B-structure on its supporting set
FX: indeed any ideal BX in PX generates an ideal of subsets FBX ∈ PFX , whose elements will be, by
definition, the bounded subsets of X; on the contrary though, if we have an ideal in I ⊆ PFX = P(FX)
there is no guarantee that it is generated by subgroups.
For example if we consider Z, it is easy to see that the only possible B-structure on Z as a group is the
trivial ideal consisting of all subgroups (recall that the ideal has to be cofinal): if instead we consider
Z as a set we have plenty on non trivial cofinal ideals, e.g. we can consider the ideal of finite subsets
of Z.

Example 1.25 (Puiseux monomials). Since there are no proper subfields of Q, Q as a field does not
admit any nontrivial B-structure.
If instead we see Q as an ordered group, we can consider the ideal in the poset of subgroups generated
by the set of subgroups of the form Z/n for n ∈ N>0, this is actually the minimal cofinal ideal of
subgroups, i.e. the coarser B-group structure possible on Q as agroup.
The bounded subsets w.r.t. to this are then the subsets X ⊆ Q that admit a minimum common de-
nominator. A multiplicative version of this B-group could be called the B-group of Puiseux monomials.

Remark 1.26. Every object X of C admits a trivial B-structure given by the degenerate ideal BX =
PX consisting of all subobjects of X, that is the ideal spanned by the identical substructure X ⊆ X.
Every map f : Y → X, is then a bounded map f : (Y,BY ) → (X,PX). This gives a fully faithful
functor P : C→ CB which is a right adjoint to the forgetful functor F : CB → C.

C(FY,X) ∼= CB(Y,PX)

Notice that this implies that F commutes with colimits.

We are now ready to extend the definition of the functors •((•))

1.1.5 Bounded Hahn groups
Construction 1.27. Let A be an object of OAbGrpsB and Γ an object of ChainsBI we set

A((Γ))B =
⋃
{A′((Γ′)) : A′ ∈ BA, Γ′ ∈ BΓ} ⊆ FA

((
F Γ
))

that is the group of Hahn sums f for which both the support and the set of coefficients are bounded.
We call it the bounded Hahn group with coefficients from A and monomials from Γ.

6 of course the image of a subobject x′ : X′ ↪→ X is defined as the class of the only monomorphism f∗(x′) = m ∈ R
factoring m ◦ e = f ◦ x′ : X′ ↪→ Y .
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Fact 1.28. Let A,B be objects of OAbGrpsB and Γ,∆ objects of ChainsBI and f : A→ B, α : Γ→ ∆
bounded maps, then F f : FA((F Γ))→ FB((F ∆)) restricts to a map A((Γ))B → B((∆))B

Definition 1.29. Denote by •((•))B : OAbGrpsB × ChainsBI → OAbGrps the following functor

(A,Γ)

(f,α)

��

(B,∆)

7→

A((Γ))

f((α))

��

B((∆))

Example 1.30. Let Γ be a chain, we can consider on Γ the B-structure consisting of the ideal BΓ := F
consisting only of the finite parts of Γ, set then Γ = (Γ,BΓ). If A is an ordered abelian group then we
have that

A((Γ))B = (PA)((Γ))B = A⊕Γ

is the direct sum of Γ copies of A considered with the lexicographic order.

1.1.6 Bounded Hahn fields
The functor •((•))B has an analogous definition as a functor

•((•)) : OFieldsB ×OAbGrpsB → OFields

Construction 1.31. Let K be an object of OFieldsB and (G, ·, 1, <) an object of OAbGrpsB we set

K((G))B =
⋃
{K ′((G′)) : K ′ ∈ BK , G′ ∈ BG} ⊆ FA

((
F Γ
))

and call it the bounded Hahn field with monomials from G and coefficients from K.

We know that K((G))B has a field structure because it is a filtered union of subfields, we actually
see that it is a truncation closed subfield of FK

((
FG

))
, moreover if K = PK has a trivial B-structure,

then it is an analytic subfield of FK
((

FG
))

in the sense of [2]: that is, on top on beeing truncation
closed it also satisfies the condition that if x ∈ FK

((
(FG)<1

))
then for every {kn : n ∈ N} one has

that
∑
n∈N

knx
n ∈ K((G)).

Example 1.32 (Puiseux Series). Let K be an ordered field and let M = tQ be the B-group of Puiseux
monomials as defined in Example 1.25. Then K

((
tQ
))B

= (PK)
((
tQ
))B is the called field of Puiseux

series with coefficients from K: it consists of the Hahn sums on the set of monomials tQ whose support
are sets tX with X ⊆ Q admitting a minimum common denominator.

1.1.7 B-structure and filtrations
Definition 1.33. Let C be a category, D a directed set, and X an object in C, define a filtration on
X to be a D-indexed family of subobjects of X, {Xd : d ∈ D} such that d < d′ ⇒ Xd ⊆ Xd′ that is
cofinal.
We say that a map ϕ :

(
X, (Xd)d∈D

)
→
(
Y, (Ye)e∈E

)
is a filtration bounded map if there is a poset

map b : D → E such that ϕ(Xd) ⊆ Yb(d).
For a directed set of subobjects {Xd : d ∈ D} of X we define the ideal generated by {Xd : d ∈ D} as

I(Xd : d ∈ D) = {X ′ ⊆C X : ∃d ∈ D, X ′ ⊆ X}

if {Xd : d ∈ D} was a filtration then the ideal is cofinal and is thus a B-structure.

Proposition 1.34. Let
(
X, (Xd)d∈D

) (
Y, (Ye)e∈E

)
be filtered objects, then a map ϕ : X → Y is

filtration bounded if and only if it is bounded as a map (X,BX)→ (Y,BY ) where

BX = I(Xd : d ∈ D) BY = I(Ye : e ∈ E)

10



1.1.8 B-structures and filtered colimits
Let C be a category admitting small filtered colimits then CB admits small filtered colimits. We will
limit the tractation to the case of directed colimits (i.e. the domain of the functor is a directed poset),
for three reasons. First: it is simpler; second: we will actually only need this case; third: it is actually
equivalent to the general case. In fact it is known that any filtered category has a cofinal functor
from a directed poset thus if it admits small directed colimits it also admits small filtered colimits ([1],
Theorem 1.5 and subsequent Corollary, pp.14-15). This also implies that a functor preserving directed
colimits preserves filtered colimits.

Construction 1.35. Let D be a filtered set, X : D → CB a diagram for notational commodity set

X(d) = Xd X(d < d′) = χd,d′

also let X∞ = lim−→FX, where F : C→ CB is the forgetful functor, and denote by

χd : FXd → X∞

the cone maps. Set
BX∞ = I

(⋃{
(χd)∗(BXd) : d ∈ D

})
i.e. the ideal generated by the (χd)∗(X

′
d) ∈ PX∞ as d ranges in D and X ′d ranges in PXd . This is a

B-structure on X∞.

Proposition 1.36. The above defined (X∞,BX∞) with cone maps χd is a colimit for the diagram X.

Proof. First note that all of the χd are bounded maps so what we have is actually a cone X ⇒
(X∞,BX∞) in CB.
Let us verify the universal property: assume we have a cone f : X ⇒ Y , that is, cone maps fd : Xd → Y ;
since X∞ is a colimit in C, we have that there is a unique map f∞ ∈ C(X∞,FY ) such that for every
d ∈ D one has f∞ ◦ χd = fd, thus the only thing we need to prove is that f∞ is bounded.
Let Z ∈ BX∞ , then by definition, there is a d ∈ D and a Zd ∈ BXd such that Z ⊆ (χd)∗(Zd), now
(f∞)∗(Z) ⊆ (f∞)∗(χd)∗(Zd) = (fd)∗(Zd) and this is in BY because by hypothesis fd is bounded.

Theorem 1.37. The functor •((•))B : OAbGrpsBI × ChainsBI → OAbGrpsI commutes with filtered
colimits.

Proof. Let Γ : D → OAbGrpsBI and K : D → OFieldsB be two diagrams, with D a directed set. Let
g• : Γ⇒ Γ∞ and f• : K ⇒ K∞ be the colimiting cones, we clearly have a map

lim−→K((Γ))B −→ K∞
((

Γ∞
))B ⊆ (FK∞)

((
F Γ∞

))
It suffice to show that such map is surjective: unwrapping the definitions an element of K∞

((
Γ∞
))B is

an infinite sum ∑
i<α

kiγi ki ∈ (fd)(K
′
d); γi ∈ (gd)(Γ

′
d); d ∈ D; K ′d ∈ BKd ; Γ′d ∈ BΓd

hence it lies in the image of fd((gd)), and thus in the image of the map above.

Corollary 1.38. If A and C are directed diagrams in OAbGrpsI and ChainsI respectively, then we
can compute the colimits in OAbGrpsI of composite diagrams A((C)) : D × E → OAbGrpsI using the
following realtions

lim−→A
((
C
)) ∼= F

((
lim−→PA

) ((
lim−→PC

))B)
where P : C→ CB denotes the “trivial B-structure endowing functor” as in Remark 1.26.

Proof. F commutes with colimits and F P is (naturally isomorphic to) the identity functor.

The meaning of the above corollary is that if we have directed diagrams A : D → OAbGrpsI and
C : E → ChainsI and compute their limits in the bounded version fo the categories, that is we compute
the bounded structures

A∞ = lim−→PA C∞ = lim−→PC

then we are able to reconstruct the limit of the diagram A((C)) : D × E → OAbGrps simply applying
the extended verison of the functor •((•)).
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1.1.9 A further possible extension
Disclaimer: Although this is quite natural, I m not sure the use of this worths the effort, maybe skip
for now. We’ll just need the convention at the end of the example.

We may want to retain information about filtrations also in the result of •((•))B, this can be done
just considering the obvious ideal of uniformly bounded subgroups:

Definition 1.39. Let A = (FA,BA) and Γ = (FΓ,BΓ) be objects of OAbGrpsB and ChainsBI , then
we can turn A((Γ))B into an element of OAbGrpsB by setting

BA((Γ))B = I (A′((Γ′)) : A′ ∈ BA, Γ′ ∈ BΓ)

Example 1.40 (B-structure on Lexicographic Direct Sums). Let Γ be a chain again with the B-
structure BΓ consisting of the ideal of finite parts, and A be an object of OAbGrpsB, then we have
that A((Γ))B is given by

F
(
A((Γ))B

)
= A⊕Γ BA((Γ))B = I

(
(A′)⊕Γ : A′ ∈ BA

)
Given a chain Γ and an A object of OAbGrpsB we thus convene that A⊕Γ will denote the B-group
obtained as above.

1.2 Transseries
We start recalling the definition of the two exponential fields TE and TLE as given in [9]. Transseries are
formally defined as a filtered colimit of a certain inductively defined digram of ordered fields. Additional
operations on them, such as exponentials and logarithms, are usually also defined as colimits of certain
natural transformation between diagrams.
Transseries are an analytic subfield of some R

((
G
))

in the sense of [2], and have an analytic logarithm,
log :

(
TEL

)>0 → TEL, meaning that

• log extends the natural logarithm on R,

• log(1 + ε) + 1 =
∑
n∈N

(−1)nxn

n+ 1
for every infinitesimal element ε ∈ R

((
G<1

))
.

• log : (G, ·, 1)→
(
R
((
G>1

))
∩ TEL,+, 0) is an isomorphism of ordered groups.

Notice that an analytic logarithm on an analytic subfield is completely determined by its restriction to
the group of monomials.

We will see that as a filtered colimit of fields of the form R((G)), the field of transseries can also be
naturally regarded as a field of the form R((G))B once we define an appropriate B-structure on G.
With such a point of view the construction of transseries, can be looked at as a solution to the problem
of finding a B-group G such that there is an ordered group isomorphism G ' R

((
G>1

))B: this given,
an analytic logarithm can be defined using the multiplicative decomposition of the positive cone

R
((
G
))B ∼= G× R>0 ×

(
1 + R

((
G<1

))B)
Once one has the whole field of trannseries TEL, and that of exponential and logarithm, it will

be natural to try to look at additional constructions as constructions on subsets, as well as it will
be to “access” (that is, name in a proof or a statement) elements and substructures via the ambient
operations of infinite sums log and exp. We found though that keeping track of all stuff functorially
has his own interest, so often we will present both approaches.

1.2.1 Notations
There will be quite some maps and objects to work on, for uniformity (and readability) some notational
convention will be needed. We won’t make an implicit use of the conventions: that is we will usually
give every map a name when we define it, though in order to help the reader keep in in mind names, we
present briefly the mechanics behind the notation. This will also serve as a refresh of some categorical
notions and constructions.
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On partial limits: Recall that given two categories I,J (to be thought as diagram shapes, if we
want) and a functor F : I ×J ⇒ C to some cateogry C, then one can think of partial limits or colimits
(if they exist). Since we will be concerned mainly with colimits, we’ll present the situation looking at
these (situation with limits is the same with some reverted arrows). For every object j of J we have
“column” functors

Cj : I → I × J

i

f

��

i′

7→

(i, j)

(f,idj)

��

(i′, j)

Also for every map g : j → j′ there are natural transformations (id•, g) : Cj ⇒ Cj′ given by (id•, g)i =
(idi, g). A partial colimit at j of F (if it exists) is a colimit lim−→(F ◦Cj), sometimes it is also written as

lim−→
i∈I

F (i, j)
def
= lim−→(F ◦ Cj)

the natural transformations (id•, g) give then, applying F , natural transformations

F (id•, g) : F ◦ Cj ⇒ F ◦ Cj′

these will induce maps

lim−→
i∈I

F (idi, g)
def
= lim−→F (id•, g) : lim−→(F ◦ Cj)→ lim−→(F ◦ Cj′)

Another more concise way to see this is to say that that a functor F : I × J → C defines an adjunct

FJ : I → Func(J , C)

then if for every object j ∈ J , the colimit lim−→(F ◦ Cj) exists, one has that the functor

j

g

��

j′

7→

lim−→(F ◦ Cj)

lim−→F (id•, g)
��

lim−→(F ◦ Cj′)

is the colimit of the adjunct FJ , and is deonted, the cone maps FJ (i) → lim−→FJ are the natural
transformations whose j-th component is the cone map F (i, j)→ lim−→(F ◦ Cj).
Since this happens to generate cofusion at a first read, we explicitely remark that the limit of the
J -adjunct is a functor from J that has as object images colimits along I, that is colimits of the F ◦Cj
that are the valuation on objects of the other other adjunct F ◦ Cj = FI(j):(

lim−→FJ

)
(j) = lim−→(F ◦ Cn) = lim−→

(
FI(j)

)
For a more detailed exposition see [7], (section V.3 “Limits with Parameters” and related).

Notations for functors from Z2: We will work mainly with functors F : Z2 → C or F ′ : Z→ C.
The poset category Z has an autofunctor S, S(n) = n+ 1, and we have autofunctors (Sl, Sk) on Z2 as
well. Also we have functors

Rm : Z→ Z2 n 7→ (m,n)

Cn : Z→ Z2 m 7→ (m,n)

So that given a F : Z2 → C we have that F ◦ Rm and F ◦ Cn are respectively the m-th raw and the
n-th column of the diagram given by F . Most of the functors F ′ : Z → C we’ll consider arise in this
way.
Before proceeding any further we give some notational convention for the categorical construction we
are going to use: for a functor F : Z→ C we will use different names f•,•, g•,• for its defining maps

(m,n) //

��

(m,n+ 1)

��

(m+ 1, n) // (m+ 1, n+ 1)

F7→

F (m,n) fm,n //

gm,n

��

F (m,n+ 1)

gn+1,m

��

F (m,n) fm+1,n // F (m+ 1, n+ 1)
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One can also see f, g as natural transformations

f•,• : F ⇒ F ◦ (idZ, S) g•,• : F ⇒ F ◦ (S, idZ)

that in some sense define the functor. These also give natural transformations

f•,n : F ◦ Cn ⇒ F ◦ Cn+1 gm,• : F ◦Rm ⇒ F ◦Rm+1

The notational convention for colimit cone maps will follow the idea that if F ′ : Z→ C is a diagram
of type Z, and we named its defining maps as F ′(n → n + 1) = fn, then the cocone map from F ′(n)
is denoted as fn : F ′(n) → lim−→F ′. Thus, cone maps of partial colimits (i.e. limits along columns or
raws) will usually be thus denoted as

fm,n : F (m,n)→ lim−→F ◦ Cn gm,n : F (m,n)→ lim−→F ◦ Cn

When considering instead cocone maps for the colimit of the whole F : Z× Z→ C we will use one of
the two notations

Fm,n = fgm,n : F (m,n)→ lim−→F

As for maps between colimits induced by natural transformtions, if we have F ′, G′ : Z→ C diagrams
of shape Z and a natural transformation between them α• : F ′ ⇒ G′, then we will denote the colimit
map as α∞ : lim−→F ′ → lim−→G′.
Similarly we will denote maps induced by natural transformations on partial limit (that is limits along
raws or columns), by putting an ∞ symbol in place of the index we are doing colimits along, for
example

f∞,n = lim−→ f•,n : lim−→F ◦ Cn → lim−→F ◦ Cn+1

gm,∞ = lim−→ fm,• : lim−→F ◦Rm → lim−→F ◦Rm+1

When considering maps between “total” colimits induced by natural transformations α•,• : F ⇒ G
between functors F,G : Z2 ⇒ C we sometimes drop the double ∞ subscript and write

α = α∞,∞ : lim−→F → lim−→G

Remark 1.41. All diagrams F ◦ (Sm, Sn) have the same colimit, meaning that if F with cone maps
Fm,n : F (m,n) → F is a colimit of F , then Fm+k,n+l define cone maps F ◦ (Sk, Sl) ⇒ F. With such
an identifications we have that the natural transformations

f•,• : F ⇒ F ◦ (idZ, S) g•,• : F ⇒ F ◦ (S, idZ)

given by the maps defining the diagram F , all give the identity on the colimit F, so we could call them
and any composition of them, identical transformations.

We’ll see that this functorial perspective is usefull as, for example exponential and logarithm
will be defined respectively as colimits of natural transformations E : T ⇒ T>0 ◦ (idZ, S) and
L : T>0 ⇒ T ◦ (S, idZ), then verifying for example that exp ◦ log = id will be as easy as proving
that E(id,S) ◦L : T ⇒ T ◦ (S, S) equals some identical natural transformation (that is :TO EXPLAIN).

In general when presenting maps as colimits of natural transformations, aside from some sempli-
fication coming from the fact that the single maps of the transformation will usually be easier to
manipulate, we will also have informations such as where some piece of the filtration coming with the
colimit goes.

At some stage we will work with maps between products (or sums) of groups one of which could
be written additively and the other one multiplicatively in particular we will deal with certain decom-
positions into biprouducts.

We will use the following notation: assume, (A, ∗, e), (B, ∗, e), (A′, ?, e′), (B′, ?, e′) are groups and

f : (A, ∗, e)→ (A′, ?, e′) g : (A, ∗, e)→ (B′, ?, e′)

h : (B, ∗, e)→ (A′, ?, e′) k : (B, ∗, e)→ (B′, ?, e′)
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Then we denote the biproducts A©∗ B and A′ ©? B′ and get maps

A
©∗
B

[
f g
h k

]
//

A′

©?
B′

(a, b) 7→
(
f(a) ? g(b), h(a) ? k(b)

)

We will aslo use the convention that constant maps will be denoted by the same symbol of their value,
so for example a diagonal map exp× exp : R⊕ R→ R>0 � R>0 will be written as

R
⊕
R

[
exp 1
1 exp

]
//

R>0

�
R>0

1.2.2 Definition of TEL, TE, TL

We come now to the technical definition of the field of exponential and log-exp transseries, in what
follows let E denote a formal operator taking a group in additive notation to one in a multiplicative
one: that is if (A,+, 0) is a group then (E(A), ·, 1) is a group isomorphic to A via an isomorphism
E : A→ E(A). first consider the construction

Construction 1.42. Inductively define

Nn = {1} Kn = R((Nn)) = R Jn = 0 for n < 0

N0 = tR K0 = R((N0)) J0 = R((N>1
0 ))

Nn+1 = E(Jn) Kn+1 = Kn
((
Nn+1

))
Jn+1 = Kn

((
N>1
n+1

))
Denote by ιn : Kn → Kn+1 the inclusions. Note that the relation Nn+1 = E(Jn) holds for every
n 6= −1.

In [9], the field of exponential transseries TE is defined as the union of the Kn along the inclusions ιn.
The field of log-exp transseries TEL is therein then defined as a filtered colimit of a diagram

· · · �
� β

// TE �
� β

// TE �
� β

// · · ·

of shape N (or equivalently Z by cofinality) given by copies of TE and a “substitution” map β : TE → TE .
Thus TEL will contain differently embedded copies of the TE : each of one will be closed under the
ambient exp : TEL →

(
TEL

)>0, but not under the ambient log.
Here we will give a description of the substitution map β as the colimit construction (union) of a
natural transformation βn between diagrams

· · · �
� ιn−1

// Kn �
� ιn //

βn

��

Kn+1
� � ιn+1

//

βn+1

��

Kn+2
� �ιn+2

//

βn+2

��

· · ·

· · · �
� ιn // Kn+1

� � ιn+1
// Kn+2

� � ιn+2
// Kn+3

� �ιn+3
// · · ·

(1.1)

where each component βn is obtained inductively form the previous one. Note the shift in the indexes,
that corresponds to the fact that the substitution map does not preserve the Kn ⊆ TE but only sends
Kn into Kn+1.

We found it interesting and useful with respect to the goal of defining an ω-map on TEL, to consider
also the colimit of the Kn along the maps βn: this will produce subfields TL of TEL that will turn out
to be closed under the ambient log.

We will thus proceed defining a Z2-shaped diagram of fields extending Diagram 1.1. This is the
idea behind the following constructions.
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Construction 1.43. Inductively define

a−1 : N−1 → N0 β−1 : K−1 → K0 α−1 : J−1 → J0

a−1(1) = 1 β−1 = idR((a−1)) α−1(0) = 0

a0 : N0 → N1 β0 : K0 → K1 α0 : J0 → J1

a0(tr) = E(rt) β0 = β−1((a0)) α0 = βn((a>1
0 ))

an+1 : Nn+1 → Nn+2 βn+1 : Kn+1 → Kn+2 αn+1 : Jn+1 → Jn+2

an+1 = E(αn) βn+1 = βn((an+1)) αn+1 = βn((a>1
n+1))

where α>0
n : J>0

n → J>0
n+1 is the restriction of αn to the positive parts, and for f : A → B, E(()f) :

tA → tB deontes the function E(a) 7→ E(f(a)).
Recall (Definition 1.13) that for a decreasing family of monomials ni = E(ji), i ∈ γ ∈ On and a family
ki of coefficients, we have

βn((an))
∑
i<γ

kini =
∑
i<γ

βn(ki)an(ni) =
∑
i<γ

βn(ki)t
αn−1(ji)

We also set Kn = R, Jn = 0 and βn = idR, αn = 0 for n < −1.
Note that βn are embeddings of ordered fields, both an, αn are embeddings of ordered abelian groups,
and are respectively the restriction of βn to the monomials and purely infinite elements of the con-
struction Kn = Kn−1

((
Nn−1

))
.

The last two relations on the last raw hold for every n ∈ Z whereas an+1 = E(αn) holds only if n 6= −1.

Remark 1.44. The definition of βn matches the pieces of the inductive definition of the substitution
maps given in [9].

Remark 1.45. The heuristic behind the definition is the following: we want to interpret the multi-
plicative group N0 as a group of real powers of some base infinite symbolic element x > R we substitute
to t, that is N0 ∼ N0,x ∼ xR, we also would like E to act as exp on infinite elements, hence formally
N0,x = exp(log(x)R):

N0,x =
(
tR
)
x

= xR = exp(log(x)R)

then we would like to interpret N1 again looking E as an exponential, but we would like to consider it
as built from a N0,log(x) where we substituted log(x) to t

N1,log(x) =

(
E(R

((
tR
>0

)
)))

log(x)

= exp

(
R
((

log(x)R
>0)))

= exp

(
R
((

exp(log2(x)R>0)
)))

The natural identification of elements in N0,x as elements of N1,log(x) should then be given by an
exp-conjugate of the inclusion

log(x)R = exp(log2(x))R ⊆ R
((

exp(log2(x)R)
))

that has precisely the form of the a0 above. To be less cryptic a0(tr) = E(rt).
In general it will be useful to keep in mind this intuition: the substitution maps βn : Kn → Kn+1 are
to be thought as inclusions

βn,x : Kn,x ↪→ Kn+1,log(x)

from a field Kn,x isomorphic to Kn with the construction starting from N0,x = xR to a field Kn+1,log(x)

isomorphic to Kn+1 obtained starting the construction from a N0,log(x) = log(x)R.
This intuition will turn into a notation once we build the total field TEL and give the definitions of
exp and log on it.

Remark 1.46. The definition of a0 could have been be somewhat clearer and more uniform if we had
introduced an alternative version J̃−1 = R of J−1 so that N0 = E(J̃−1), and an alternative version
α̃−1 : J̃−1 → J0, so that E(α̃−1) = a0, setting

α̃−1 = idR
((
t0 7→ t1 ∈ tR

))
: R→ R

((
tR
>0))

α̃−1(r) = rt

In such a case though we would have that J̃−1 would not be the group of purely infinite elements of
K−1.
With the definition we chose, instead, as we alreay pointed out, we have Z-wise validity of the relations

16



Kn+1 = Kn
((
Nn+1

))
and Jn+1 = Kn

((
N>1
n+1

))
. The benefits of this choice will become clear later on.

It will however be useful to consider this virtual version

J̃n =

{
Jn if n 6= −1

J̃−1 = R if n = −1

of the Jn so to have an additive verison of the Nn−1, that is to write Nn = E(J̃n−1) for every n ∈ Z.

Fact 1.47. With the above notations for every n ∈ Z one has

Kn ιn //

βn

��

	

Kn+1

βn+1

��

Kn+1 ιn+1 // Kn+2

βn+1 ◦ ιn = ιn+1 ◦ βn

We are now ready to introduce the diagram T the transseries will be the colimit of.

Construction 1.48. Let us define the functor T : Z2 → OFields as

(m,n) //

��

(m,n+ 1)

��

(m+ 1, n) // (m+ 1, n+ 1)

T7→

Km+n ιm+n //

βm+n

��

Km+n+1

βm+n+1

��

Km+n+1 ιm+n+1 // Km+n+2

Essentially T is the following commutative diagram

· · · K−1 ι−1 //

β−1

��

· · ·

· · · K−1 ι−1 //

β−1

��

K0 ι0 //

β0

��

· · ·

· · · K−1 ι−1 //

β−1

��

K0 ι0 //

β0

��

K1 ι1 //

β1

��

· · ·

· · · K−1 ι−1 //

β−1

��

K0 ι0 //

β0

��

K1 ι1 //

β1

��

K2 ι2 //

β2

��

· · ·

· · · · · · · · · · · · · · · · · ·

Also let Rm : Z→ Z2 be the functor n 7→ (m,n), Cn : Z→ Z2 the functor m 7→ (m,n) and S : Z→ Z
the autofunctor n 7→ n + 1, so that T ◦ Rm is the m-th raw of the diagram and T ◦ Cn is the n-th
column.
Notice that we have then that

• T ◦Rm ◦ S = T ◦Rm+1 : Z→ OrderedFields for every m ∈ Z.

• T ◦ Cn ◦ S = T ◦ Cn+1 : Z→ OrderedFields for every n ∈ Z.

• βm,n
def
= βm+n : Km+n → Km+n+1 defines a natural monomorphism βm,• : T ◦Rm =⇒ T ◦Rm+1

• ιm,n
def
= ιm+n : Km+n → Km+n+1 defines a natural monomorphism ι•,n : T ◦ Cn =⇒ T ◦ Cn+1,

since these are all intuitive inclusions, sometimes we may relax the notation and write T ◦ Cn ⊆
T ◦ Cn+1.

Another way to see this is that we have two adjuncts TL, TE : Z→ Func
(
Z,OFields

)
of the functor T

m

��

m+ 1

TE7→

T ◦Rm
βm,•

��

T ◦Rm

n

��

n+ 1

TL7→

T ◦ Cn
ι•,n

��

T ◦ Cn+1
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Then set

TEm = lim−→
(
TE(m)

)
=
(

lim−→TL
)
(m) TLn = lim−→

(
TL(n)

)
=
(

lim−→TE
)
(n) TLE = lim−→T

These will correspond to the differently embedded copies of TE and TL.
Denote the corresponding cocone maps as

βm,n : Km+n ↪→ TLn ιm,n : Km+n ↪→ TEm βιm,n : Km+n ↪→ TLE

Also along with the naming convention we stated in Subsection 1.2.1, we set

βm,∞ = lim−→βm,• : TEm ↪→ TEm+1 ι∞,n = lim−→ ιn,• : TLn ↪→ TLn+1

and denote the corresponding cone maps as

βm,∞ : TEm ↪→ TEL ι∞,n : TLn ↪→ TEL

Remark 1.49. IMPORTANT Since T ◦ Rm+1 = T ◦ Rm ◦ S and S is an autofunctor, there is a
natural isomorphism TEm ∼= TEm+1. Analogously TLn ∼= TLn+1. They are almost the same objects at this
stage: we just keep track of the the index of the different copies as they will correspond to different
subfields of TEL.

Remark 1.50. The idea of the construction is to think of T (m,n) as what will be a copyKm+n,logm(x) ∼
Km+n generated starting with a M0,logm(x) = logm(x)R.

Definition 1.51. The fields of exponential transseries (also exp-transseries, or log-free transseries)
TE and of logarithmic-exponential transseries (also log-exp transseries, or just transseries) TLE are
defined respectively as

TE = lim−→T ◦R0 TLE = lim−→T

We also define TL = lim−→T ◦ C0 the field of log-transseries. So that TLE is both the colimit of the

system TE
β
↪→ TE

β
↪→ · · · and of TL ι

↪→ TL ι
↪→ · · · .

1.2.3 Diagrams J and N

What one can see from the construction above is that the Jn and the Nn are also in a Z-shaped diagram
of maps αn : Jn → Jn+1, an : Nn → Nn+1.

Construction 1.52. Let J0, N0 : Z→ OAbGrps denote the functors

m

��

m+ 1

J0

7→

Jm
αm

��

Jm+1

m

��

m+ 1

N0

7→

Nm

an

��

Nnm1

Along with our naming convention denote the limits and the respective cone maps as

J∞ = lim−→P J0 αm : Jn
αm−→ J∞

N∞ = lim−→P J0 am : Nn
αm−→ N∞

Thus the associated B-structures BJ∞ , BN∞ are respectively the ideals of subgroups generated by the
αm(Jm) and the ideal of subgroups generated by am(Nm).

Remark 1.53. If we consider the natural inclusions jm,n : Jm+n ↪→ Km+n, and jm,n : Nm+n → K>0
m+n

we see that these define transformations j•,n : J0 ◦ Sn ⇒ TCn and j•,n : J0 ◦ Sn ⇒ TCn that in turn
induce

j∞,n = lim−→ j•,n : J∞ → TLn j∞,n : N∞ →
(
TLn
)>0

Thus we get Z-parametrized embeddings

ι∞,n ◦ j∞,n : J∞ → TLE ι∞,n ◦ j∞,n : M∞ →
(
TLE

)>0

One has that ι∞,n ◦ j∞,n(J>0
∞ ) < ι∞,n+1 ◦ j∞,n+1(J>0

∞ ): in fact

ι∞,n ◦ j∞,n(J>0
∞ ) < j∞,n+1(J>0

∞ )
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because for every m one has

jm,n+1J>0
m+n+1 > ιm,nKm+n ⊇ ιm,njm,nJm+n

a similar statement holds for the embeddings j∞,n.
This gives an embeddings

j⊕ =

[
ι∞,n ◦ j∞,n

]
n∈Z

: J⊕Z∞ → TEL j� =

[
ι∞,n ◦ j∞,n

]
n∈Z

: N�Z∞ →
(
TEL

)>0

and we will see that their images consist respectively of the purely infinite elements and of the mono-
mials over R.

Remark 1.54. The functors N0 relates to the ones we already defined in that one has the equality at
the level of functors

T ◦ Cn+1 = (T ◦ Cn)
((
N0 ◦ Sn

))
=
(
• ((•))

)
◦
(
T ◦ Cn, N0 ◦ Sn

)

Z

[
T ◦ Cn
N0 ◦ Sn

]
//

OFields
×

OAbGrps

•((•))
// OFields

Moreover the natural transformation ι•,n : T ◦Cn ⇒ T ◦Cn+1 = (T ◦Cn+1)
((
N0 ◦ Sn

))
consists of the

natural inclusions coming with the functor
(
• ((•))

)
.

As an example of application of Theorem 1.37 we can observe that from the relation above it immedi-
ately follows that

TLn+1
∼= TLn

((
N∞

))B
and that with such an identification the embedding ι∞,n : TLn ⊆ TLn+1 is just the natural inclusion
TLn ⊆ TLn

((
Nn

))B.
Another thing the above relation is telling us, is that one can build the n + 1-th column form the
n-th one, and the natural transformation between them just knowing N , via the •((•)) functorial
construction.
We note also that the definition of the Jn in terms of the Nn also translates into the relation

J ◦ Sn = (T ◦ Cn)
((

(N0)>1 ◦ Sn
))

Remark 1.55. The previous remarks tell us that both N0 and J0, don’t have a canonical way to be
be regarded as diagrams of will-be subsets of TEL, as they (or better, some translation of them) can be
embedded in each of the columns TCn of T in such a way that the image of j•,n+1 : J ◦Sn+1 ⇒ TCn+1

has 0 interesection with TCn ⊆ TCn+1. It is then convenient to introduce the notation Jn, Nn for
functors

TCn ⊇ Jn ∼= J ◦ Sn and TC>0
n ⊇ Nn ∼= N ◦ Sn

to be thought as subfunctors Jn ⊆ TCn, Nn ⊆ TC>0
n .

In practice we set Jn and Nn to be the diagrams consisting of images of the natural embeddings
j•,n : J ◦ Sn ⇒ TCn, j•,n : N ◦ Sn ⇒ TC>0

n and maps the restrictions of the maps in of TCn.
Thus Jn(m) can be thought as a the copy Jm+n ∼ Jm+n,logm(x) ⊆ Kn+m,logm(x) and and Nn(m) as a
copy Nm+n ∼ Nm+n,logm(x) ⊆ K>0

m+n,logm(x).

Definition 1.56. A more convenient way to state this is to deonte by [Z] the (discrete) cateogry with
objects the integers and no morphism other then the identitity and define J , N as fucntors

J : Z× [Z]→ OAbGrps N : Z× [Z]→ OAbGrps
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so that J(•, n) = Jn and N(•, n) = Nn. Essentially, e.g. J looks like

· · · J−1 ⊆ K−1

α−1

��

· · ·

· · · J−1 ⊆ K−1

α−1

��

J0 ⊆ K0

α0

��

· · ·

· · · J−1 ⊆ K−1

α−1

��

J0 ⊆ K0

α0

��

J1 ⊆ K1

α1

��

· · ·

· · · J−1 ⊆ K−1

α−1

��

J0 ⊆ K0

α0

��

J1 ⊆ K1

α1

��

J2 ⊆ K2

α2

��

· · ·

· · · · · · · · · · · · · · · · · ·

We will thus write Nm,n = Nn+m for Nm,n seen as Nn(m), i.e. as the multiplicative subset of
T (m,n)>0 and denote the corresponding maps am,n = am+n : Nm,n → Nm+1,n. A similar thing we do
with Jn,m = Jn+m and αm,n = αm+n. With a convention similar to that we used for the adjuncts of
T we name them

JL = JZ : [Z]→ Func(Z,OAbGrpsI) JE = J[Z] : Z→ Func([Z],OAbGrpsI)

NL = NZ : [Z]→ Func(Z,OAbGrpsI) NE = N[Z] : Z→ Func([Z],OAbGrpsI)

So that JL(n) : Z→ OAbGrpsI is the n-th column of the diagram above and JE(m) : [Z]→ OAbGrpsI
is the m-th raw.
Note that although J and N do not admit a colimit in OAbGrpsI one easily sees that each JL(n) and
each NL(n) do, so that JE and NE have colimits: in particular they are given by(

lim−→ JE
)
(n) = lim−→

(
JL(n)

)
= J∞,n = J∞ αm,n = αm+n : JE(n)(m)→ J∞,n(

lim−→NE
)
(n) = lim−→

(
NL(n)

)
= N∞,n = N∞ am,n = am+n : NE(n)(m)→ N∞,n

Also notice that with such a notation Remark 1.54 reads

TL(n+ 1) =
(
TL(n)

)((
NL(n)

))
JL(n+ 1) =

(
TL(n)

)((
NL(n)>1

))
1.2.4 On the relation between J and N

Even though N ◦ (id, S) 6= t• ◦ J , as Nm+n+1,logm(x) 6= exp(Jm+n,logm(x)) for n + m = −1, there are
two relevant map of diagrams which will be useful to describe transseries.

Construction 1.57 (Map τ). First notice that for every n, there is a map E(:)Jn → Nn+1 and this
is an isomorphism for every n 6= −1, in which case we have that E(:){0} → N0 is just the inclusion
from the trivial group. One the easily sees that setting

τn = E : Jn → Nn+1 Jn 3 x 7→ E(x) ∈ Nn+1

defines a map of diagrams τ• : J → N ◦ S. With Remark 1.55 in mind we define τm,n = τm+n so to
get analogs τ•,n : Jn ⇒ Nn+1 of τ• between the various shifted copies Jn and Nn+1 of J0 and N0,
otherwise put we are to define a natural transformations

τ : J ⇒ N ◦ (idZ, S)

The idea is that τ represents exponentiation of certain purely infinite elements: we have J(m,n) ∼=
Jm+m,logm(x) and N(m,n+ 1) ∼= Nm+n+1,logm(x) then will correspond to

exp | : Jm+n,logm(x) → Nm+n+1,logm(x)

Construction 1.58 (Map λ). On the other hand it is also natural, even though a bit more involved
to consider maps

λn : Nn → Jn
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which, following an heuristic similar to that of Remark 1.45, should represent the operation of taking a
monomial of Nn ∼ Nn,x to the purely infinite element of Jn ∼ Jn,log(x), corresponding to its logarithm.
The base case may be explained as follows

log(N0,x) = log(xR) = log(x)R ⊆ R
((

log(x)R
>0))

= J0,log(x)

What we want is that λn,x = log | : Nn,x → Jn,log(x), i.e. that when it is composed with the appropriate
instances of τ ∼ exp |, it gives what will be inclusions:

τn,log(x) ◦ λn,x : Nn,x ⊆ Nn+1,log(x) λn,x ◦ τn−1,x : Nn−1,x ⊆ Nn,log(x).

We recall that such inclusion correspond to the substitution maps on monomials an : Nn → Nn+1.
Thus λn has to satisfy

τn ◦ λn = an λn ◦ τn−1 = αn−1

Since τn = E is an isomorphism for n 6= 0 we can define λn = τ−1
n ◦an, and let λ−1 be the only possible

map λ−1 : N−1 = {1} → J−1 = {0}.
Now we use to write elements of Nn as tx with x ∈ J̃n (see Remark 1.46), so for for the sake of
readability one would like to have a formula as λn(tx) = f(x): we set

λn : Nn → Jn λn(tx) = αn−1(x) for n > 0

λ0 : N0 = tR → J0 λ0(tr) = rt = α̃−1(r)

λn : Nn = {1} → Jn = 0 λn(1) = 0 for n < 0

One easily verifies that with such a definition λ• : N0 ⇒ J0 is natural.
Again it is convenient to define λm,n = λm+n: the natural maps between the contextualized versions
Jn and Nn of J and N to look at are, (achtung! ) τ•,n : Nn ⇒ Jn−1 ◦ S ⊆ TCn−1 ◦ S that is, λ is to
be regarded as a natural transformation

λ : N ⇒ N ◦ (S, S−1)

so that λm,n : N(n,m) → J(m + 1, n − 1) for we want λn+m,logm(x) = log | : Nn+m,logm(x) →
Jn+m,logm+1(x).

1.2.5 Additive and multiplicative decompositions
Recall that given a Hahn field K((G)) there are

• a canonical additive decomposition(
K((G)),+)

) ∼= K((G>1))
>
⊕K

>
⊕K((G>1))

• a canonical multiplicative decomposition of the positive cone(
K((G))>0, ·

) ∼= G
>
×K>0

>
×
(
1 +K((G<1))

)
We name the involved maps for the above introduced Kn = Kn−1((tJn−1)). We also state some

propeties relative to the map β, namely that such maps respect the decomposition.
In order to avoid writing expressions as K((G<1)), we introduce a symbol

J

n for the groups of
elements of Kn infinitesmial w.r.t. to Kn−1.

Definition 1.59. For n ∈ Z, set

J

n = Kn−1

((
N<1
n

))
. Also let j

n :

J

n → Kn denote the inclusions and
αn :

J

n →

J

n+1 be the substitution map restricted to infinitesimal elments, that is αn = βn−1((a<1
n )),

or the only map satisying
βn ◦ j

n = j

n+1 ◦ αn
Construction 1.60. Define for every n ≥ −1 the maps

θn+1 : Kn+1 → Kn
((
N>1
n+1

))
= Jn+1 θn+1(f) =

∑
n∈S(f)
n>1

fnn

ρn+1 : Kn+1 → Kn ρn+1(f) = f1

εn+1 : Kn+1 → Kn
((
N<1
n+1

))
=

J

n+1 εn+1(f) =
∑

n∈S(f)
n<1

fnn
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so that after composing with the appropriate inclusions jn+1θn+1 + ιnρn+1 + j

n+1εn+1 = idKn+1 that
is θn+1

ρn+1

εn+1

 : Kn+1 −→

Jn+1

⊕
Kn
⊕J

n+1

[
jn+1 ιn

j

n+1

]
:

Jn+1

⊕
Kn
⊕J

n+1

−→ Kn+1

are inverse group isomorphism. We call εn+1, ρn+1 and θn+1, respectively the Kn-infinitesimal part,
Kn-part and Kn-purely infinite part of an element of Kn+1.
Simliarly

lmn+1 : K>0
n+1 → Nn+1 lmn+1(f) = max{S(f)}

lcn+1 : K>0
n+1 → K>0

n lcn+1 = flmn+1(n)

nrn+1 : K>0
n+1 → Kn

((
N<1
n+1

))
=

J

n+1 nrn+1(f) =
f

lmn+1(f)lcn+1(f)
− 1

So that (jn+1 ◦ lmn+1) · (ιn+1 ◦ lcn+1) · (1 + nrn+1) = idKn+1
and

 lmn+1

lcn+1

1 + nrn+1

 : Kn+1 −→

Nn+1

�
Kn
�

1 +

J

n+1

[
jn+1 ιn (1 + •)( jn+1)

]
:

Nn+1

�
Kn
�

1 +

J

n+1

−→ Kn+1

are inverse group isomorphisms ((1 + •)(f) denotes the conjugate of f by 1 + •,
(
(1 + •)(f)

)
(1 + x) =

1 + f(x)).
We call lmn+1, lcn+1 and nrn+1 respectively, the Kn-leading monomial, the Kn-leading coefficient and
the Kn-normalized reminder of an element of Kn+1.

The following is just a technical fact needed to show that the partial definitions of exponentials and
logarithms we are going to give glue together. It essentially tells us that the vertical inclusions βm+n

in some sense “commute” with both multiplicative and additive decompositions.

Fact 1.61. For every n ≥ −1 the following hold

Kn+1 lmn+1
//

βn+1

��

	

Nn+1

an+1

��

Kn+2 lmn+2
// Nn+2

Kn+1 lcn+1
//

βn+1

��

	

Kn

βn

��

Kn+2 lcn+2
// Kn+1

Kn+1 nrn+1 //

βn+1

��

	

J

n+1

αn+1

��

Kn+2 nrn+2 //

J

n+2

an+1 ◦ lmn+1 = lmn+2 ◦ βn+1 lcn+2 ◦ βn+1 = βn ◦ lcn+1 αn+1 ◦ nrn+1 = nrn+2 ◦ βn+1

Kn+1 θn+1
//

βn+1

��

	

Jn+1

αn

��

Kn+2 θn+2
// Jn+2

Kn+1 ρn+1 //

βn+1

��

	

Kn

βn

��

Kn+2 ρn+2 // Kn+1

Kn+1 εn+1 //

βn+1

��

	

J

n+1

αn+1

��

Kn+2 εn+2 //

J

n+2

αn+1 ◦ θn+1 = θn+2 ◦ βn+1 ρn+2 ◦ βn+1 = βn ◦ ρn+1 αn+1 ◦ εn+1 = εn+2 ◦ βn+1

Proof. This is quite strightforward, we just wirte down the check for the multiplicative decomposition:
Let

∑
i<α

xini with xi ∈ Kn, ni ∈ Nn, be an element of Kn+1, then applying the inductive definition of

βn+1 we have βn+1

∑
xini =

∑
an(ni)βn(xi). Now it’s just a matter of computation

lmn+2βn+1

∑
xini = an+1(n0) = anlmn+1

∑
xini

lcn+2βn+1

∑
xini = βn(x0) = βnlmn+1

∑
xini

nrn+2βn+1

∑
xini =

∑ βn(xi)

βn(x0)

an(ni)

an(n0)
=
∑

βn

(
xi
x0

)
an

(
ni
ni

)
= αn+1nrn+1

∑
tyixi
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Remark 1.62. The fact above can be restated in a more concise fashionαn βn−1

αn

 ◦
θnρn
εn

 =

 αn ◦ θn
βn−1 ◦ ρn
αn ◦ εn

 =

θn+1

ρn+1

εn+1

 ◦ βnan βn−1

(αn)

 ◦
 lmn

lcn
1 + nrn

 =

 an ◦ lmn

βn−1 ◦ lcn
(1 + αn) ◦ nrn

 =

 lmn+1

lcn+1

1 + nrn+1

 ◦ βn
βn ◦

[
jn ιn−1

j

n

]
=
[
jn+1 ιn

j

n+1

]
◦

αn βn−1

αn


βn ◦

[
jn ιn−1 (jn)

]
=
[
jn+1 ιn (jn+1)

]
◦

an βn−1

(αn)


The las two raws actually are the fact that the maps αn, βn−1, αn and an are sound domain codomain
restrictions of βn.
Setting as usual †m,n = †m+n for † ∈ {θ, ρ, ε, lm, lc,nr}, one can write this stating that for every n,
τ•,n : TCn ⇒ J defines a natural transformation

θ•,nρ•,n
ε•,n

 : TCn+1 =⇒

J(•, n+ 1)
⊕
TCn
⊕

TCn
((
N<1(•, n)

))
 lm•,n

lc•,n
1 + nr•,n

 : TCn+1 =⇒

N(•, n+ 1)
�
TCn
�(

1 + TCn
((
N(•, n)<1

)))
Remark 1.63. Aslo notice, and we will need it later, that the composition of these transformations
with ι•,n : TCn ⇒ TCn+1 are the obvious ones:θ•,n+1

ρ•,n+1

ε•,n+1

 ◦ ι•,n =

 0
id
0

 θ•,n+1

ρ•,n+1

ε•,n+1

 ◦ ι•,n =

 0
id
0


1.2.6 Log and Exp structures
We are now ready to give the natural log and exp structures on the above defined fields. We will give
inductive defintions of maps

En : Kn → K>0
n+1 Ln : K>0

n → Kn+1

that will be used to define natural transformations Em,n = Em+n and Lm,n = Lm+n

E : T ⇒ T ◦ (idZ, S) L : T → T ◦ (S, idZ)

whose limit will give the exponential and logarithm on TEL.
Moreover they can be restricted to

Em,• : TRm ⇒ TRm ◦ S L•,n : TCn → TCn ◦ S

and hence define (nonsurjective) expnential and logarithm maps

Em,∞ : TEm → (TEm)>0 L∞,n : (TLn)>0 → TLn

on subfields of TEL arising as partial limits.
The definition of the En will be the same as that given in [9] (Section 1.7) as is the defintion of the
resulting exponential maps Em,∞ : TEm → (TEm)>0 on the fields of exponential transseries.
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A consequence Neumann’s Lemma of this is that if we take the coefficients {kn : n ∈ N} in R we
can define maps K

((
G<1

))
→ K

((
G<1

))
for every extension K of R.

Moreover such maps “commute” with maps of the form β((α)) : K
((
G
))
→ E

((
H
))

with α : G → H,
β : K→ E, G,H ordered abelian groups and K,E extensions of R.

Lemma 1.64. For every K and for every G one has that

E : K((G<1))→ (1 + K((G<1))) E(x) =
∑
k≥1

xk

k!

L : (1 + K((G<1)))→ K((G<1)) L(1 + x) =
∑
k≥1

(−1)k−1xk

k

are inverse group isomorphisms.

Construction 1.65. Inductively define maps 7

E−1 : K−1 → K>0
0 E−1 = ι−1 ◦ expR

En+1 : Kn+1 → K>0
n+2 En+1 = (τn+1 ◦ θn+1) ·

(
ιn+1 ◦ En ◦ ρn+1

)
·
(
( jn+1) ◦ E ◦ εkn+1

)
L−1 : K>0

−1 → K0 L−1 = β−1 ◦ logR

Ln+1 : K>0
n+1 → Kn+2 Ln+1 = (λn+1 ◦ lmn+1) + (ιn+1 ◦ Ln ◦ lcn+1)− βn+1 ◦ L ◦ (1 + nrn+1)

That is to say one sets E−1(r) = exp(r) ∈ R = K−1 ⊆ K0, and L−1(r) = log(r) ∈ R = K−1 ⊆ K0.
Then inductively for z ∈ Jn+1, y ∈ Kn and x ∈

J

n+1 one sets

En+1(z + y + x) = tzEn(y)E(x) = tzEn(y)

∞∑
k=0

xk

k!

where En(y) ∈ Kn+1 and E(x) ∈ Kn+1 are regarded as elements of Kn+2 in the obvious way (that is
via the inclusion ιn+1).
Similarly for n = tz ∈ Nn+1 with z ∈ J, y ∈ K>0

n and x ∈

J

n+1 one sets

Ln+1

(
ny(1 + x)

)
= λn+1(n) + Ln(y) + βnL(1 + x) = α̃n(z) + Ln(y) + βn+1

∑
k≥1

(−1)k−1xk

k

where we unwrapped the definition of λn(n) as in Construction 1.58. Note the involvement of the
substitution maps α and β, on which we will comment in Remark 1.67.

Remark 1.66. We can picture the constructions as7

Kn

θnρn
εn


//

Jn
⊕

Kn−1

⊕J

n

[
τn 1 1
1 En−1 ( jn)E

]
//

Nn+1

�
K>0
n

[
jn+1 ιn

]
// K>0

n+1

K>0
n

 lmn

lcn
1 + nrn


//

Nn

�
K>0
n−1

�
1 +

J

n

[
jnλn Ln−1 0

0 0 αnL

]
//

Kn
⊕J

n+1

[
ιn

j

n+1

]
// Kn+1

Remark 1.67. The definition of En is quite self explainatory as we are seeing En ∼ En,x : Kn,x →
Kn+1,x and it is built up just so that the it matches En−1 ∼ En−1,x : Kn−1,x → Kn,x via the inclusions
ιn−1 : Kn−1 ⊆ Kn, ιn : Kn ⊆ Kn+1.
We comment more diffusely the one of Ln: the idea is that Ln should be regarded as

Ln,x : Kn,x → Kn+1,log(x).

7 the parenthesed ( jn) denotes actually ( jn) = (1 + •)( jn), that is ( jn)(1 + x) = 1 + j

n(x) (conjugate by 1 + •).
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First we decomposeK>0
n,x = Nn,x·K>0

n−1,x·(1+

J

n,x), then assuming to have a Ln−1,x : K>0
n−1,x → Kn,log(x)

we want Ln,x to match the λn,x : Nn,x → Jn,log(x) ⊆ Kn,log(x) we already discussed, on relative purely
infinite elements of the decomposition, and to match L : 1 +

J

n,x →

J

n,x ⊆ Kn,x ⊆ Kn+1,log(x) on
relative infinitesimal elements. The point then is that the wannabe inclusions

Kn,log(x) ⊆ Kn+1,log(x) Kn,log(x) ⊆ Kn+1,log(x)

are to be codified by ιn and βn respectively.
Indeed one could deduce the definition of L from the defining property that En+1 ◦ Ln = ι>0

n+1 ◦ β>0
n

and Ln+1 ◦ En = ιn+1 ◦ βn which correspond to the fact that

En+1,log(x) ◦ Ln,x : K>0
n,x ⊆ K>0

n+2,log(x) Ln+1,x ◦ En,log(x) : Kn,log(x) ⊆ K>0
n+2,x

The following proposition ensures that En and Ln define ordered group homomorphisms and com-
mute with the appropriate maps.

Proposition 1.68. The following facts hold and follow from easy computations

i for every n ≥ −1 the following are ordered group homomorphisms

En : (Kn,+, 0, <) −→ (K>0
n+1, ·, 1, <)

Ln : (K>0
n , ·, 1, <) −→ (Kn+1,+, 0, <)

ii setting Em,n = Em+n and Lm,n = Lm+n yields natural transformations

E : T ⇒ T ◦ (idZ, S) L : T ⇒ T ◦ (S, idZ)

iii for very n ≥ −1
En+1 ◦ Ln = ι>0

n+1 ◦ β>0
n = β>0

n+1 ◦ ι>0
n

Ln+1 ◦ En = ιn+1 ◦ βn = βn+1 ◦ ιn

Proof. i. This easily follows by induction, as it is true by definition for E−1 and L−1, and then assuming
En−1 and Ln−1 are group homomorphism Remark 1.66 and Lemma 1.64 show that En and Ln are
composition of group homomorphisms.
ii. Commutation with ι is straightforward by Remark 1.63 it is easy to check

En ◦ ιn−1 = ιn ◦ En−1 Ln ◦ ιn−1 = ιn ◦ Ln−1

this is essentially the fact we built En and Ln as an extension of En−1 and Ln−1.
As for β, reacall (Remark 1.62) that the decompositions commute with β and it is easy to check, using
Remark 1.66 that

En ◦ βn−1 = βn ◦ En−1 Ln ◦ βn−1 = βn ◦ Ln−1

We illustrate the En formula

En ◦ βn−1 =
[
jn+1 ιn

] [τn 1 1
1 En−1 ( jn)E

]θnρn
εn

βn−1 =

=
[
jn+1 ιn

] [τn 1 1
1 En−1 ( jn)E

]αn−1

βn−2

αn−1

θn−1

ρn−1

εn−1

 =

=
[
jn+1 ιn

] [an
βn−1

] [
τn−1 1 1

1 En−2 ( jn−1)E

]θn−1

ρn−1

εn−1

 =

= βn
[
jn+1 ιn

] [τn−1 1 1
1 En−2 ( jn−1)E

]θn−1

ρn−1

εn−1

 = βn ◦ En−1
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The situation for Ln is a a bit more complicated

Ln ◦ βn−1 =
[
ιn

j

n+1

] [jnλn Ln−1 0
0 0 αnL

] lmn

lcn
1 + nrn

βn−1 =

=
[
ιn

j

n+1

] [jnλn Ln−1 0
0 0 αnL

]an−1

βn−2

(αn−1)

 lmn−1

lcn−1

1 + nrn−1

 =

=
[
ιn

j

n+1

] [βn−1

αn

] [
jn−1λn−1 Ln−2 0

0 0 αn−1L

] lmn−1

lcn−1

1 + nrn−1

 =

= βn
[
ιn−1

j

n

] [jn−1λn−1 Ln−2 0
0 0 αn−1L

] lmn−1

lcn−1

1 + nrn−1

 = βn ◦ En−1

In both equations the central equality is a consequence of the properties of λ and τ we discussed in
Subsection 1.2.4.
iii. We just need to compute

Ln+1 ◦ En =

=
[
ιn+1

j

n+2

] [jn+1λn+1 Ln 0
0 0 αn+1L

] lmn+1

lcn+1

1 + nrn+1

 [jn+1 ιn
] [τn 1 1

1 En−1 ( jn)E

]θnρn
εn

 =

=
[
ιn+1

j

n+2

] [jn+1λn+1 Ln 0
0 0 αn+1L

]id id

[τn 1 1
1 En−1 ( jn)E

]θnρn
εn

 =

= ιn+1

[
jn+1λn+1 Ln

] [τn 1 1
1 En−1 ( jn)E

]θnρn
εn

 =

= ιn+1

[
jn+1λn+1τn LnEn−1 Ln( jn)E

] θnρn
εn

 †=
= ιn+1

[
βnjn βnιn−1 βn

j

n

] θnρn
εn

 = ιn+1βn

† here to rewrite the row matrix we use respcetevely: the λτ relation, the inductive hypothesis and the
fact, following from the inductive definition of Ln that

Ln ◦ ( jn) = j

n ◦ αn ◦ L = βn ◦ j

n ◦ L.

The other relation En+1 ◦ Ln = βn+1ιn+1 can be checked in a similar way.

Definition 1.69. By the previous Lemma (point i and ii) maps Em,n := Em+n and Lm,n := Lm+n

define natural transformations

E•,• : T → T>0 ◦ (idZ, S) L•,• : T>0 → T ◦ (S, idZ)

Thus we can define maps

log = L
def
= lim−→L•,• :

(
TLE

)>0 → TLE

exp = E
def
= lim−→E•,• : TLE →

(
TLE

)>0

Also by point iii of the previous lemma one has L = E−1.

1.3 On the groups of monomials and of purely infinite elements
In this section we prove a decomposition theorem for the group of monomials over R, MEL, we also
address the problem of showing that the above defined log, exp structures on the field of transseries
TEL ⊂ R((MEL)) are analytic: namely we still didn’t give a proof of the following facts
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• log and exp restrict to group isomorphisms

exp | : R
((

(MEL)>1
))B ∼−→MEL log | : MEL −→ R

((
(MEL)>1

))B
• for every x ∈ R

((
(MEL)<1

))B one has

exp(x) =
∑
k∈N

xk

k!
log(1 + x) =

∑
k∈N

(−1)kxk+1

k + 1

1.3.1 Monomials over R
Recall the relation TCn = TCn−1

((
Nn
))

from which one can deduce

TCn ∼= TCn−l−1

((
Nn−l

<
� · · ·

<
�Nn

))
The idea is to extend this to

TCn ∼= R
((⊙
k≤n

Nk
))

And use this to see the diagram T as given by the inclusions

TCn ∼= R
((⊙
k≤n

Nk
))
⊆ R

((⊙
k≤n

Nk
))((

Nn+1

)) ∼= R
(( ⊙
k≤n+1

Nk
)) ∼= TCn+1

Otherwise put we want to define a diagram M : Z2 → OAbGrpsI

M(m,n) =
⊙
k≤n

Nk(m) ⊆ T>0(m,n)

such that T ∼= R
((
M
))
.

There are natural identifications

Kn ∼= R
((
N0 � · · · �Nn

))
= R

((
Mn

))
Mn = N0

<
� · · ·

<
�Nn =

⊙
k∈(−∞,n]

Nk

where the last equality holds because Nk = {1} for k < 0. It is not difficult to see that with these
identifications we have that the map β corresponds to

βn = idR((a−1 � a0 � · · · � an)) : R((1� a0 � · · · � an))→ R((a0 � · · · � an+1))

Construction 1.70. Set

M−1 = 1 Mn+1 = Mn

<
�Nn+1

m−1 = 1 : M−1 →M0 mn+1 = µn
<
� an+1 : Mn →Mn+2

Essentially Mn
mn
↪→Mn+1 looks like

1�N−1

<
� · · ·

<
�Nn

� � a−1�···�an
// N0

<
� · · ·

<
�Nn

<
�Nn+1

Also set Mn = 1 for every n ≤ −1 and mn = 1 for n ≤ −2. Essentially thus, for every n ∈ Z

Mn =
⊙
k≤n

Nk

Finally let nn =

[
idMn

1

]
: Mn →Mn+1 = Mn

<
�Nn denote the canonical biproduct inclusions.

Fact 1.71. The following diagrams commute

Mn

mn

��

nn //

	

Mn+1

mn+1

��

Mn+1 nn+1 //Mn+2

nn+1 ◦mn = mn+1 ◦ nn
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Construction 1.72. Let M deonte the functor M : Z2 → OrderedAbGroups defined as

(m,n) //

��

(m,n+ 1)

��

(m+ 1, n) // (m+ 1, n+ 1)

M7→

Mm+n nm,n //

mm,n

��

Mm+n+1

mm,n+1

��

Mm+n+1 nm+1,n //Mm+n+2

where mm,n = mm+n and nm,n = nm+n. Essentially M looks like

· · · M−1 n−1 //

m−1

��

· · ·

· · · M−1 n−1 //

m−1

��

M0 n0 //

m0

��

· · ·

· · · M−1 n−1 //

m−1

��

M0 n0 //

m0

��

M1 n1 //

m1

��

· · ·

· · · M−1 n−1 //

m−1

��

M0 n0 //

m0

��

M1 n1 //

m1

��

M2 n2 //

m2

��

· · ·

· · · · · · · · · · · · · · · · · ·

Set then MEL = lim−→PM .

Remark 1.73. The natural inclusions im+n : Mm+n → K>0
m+n may be build inductively as

i0 = j0 : M0 → K>0
0 in+1 =

[
ιnin jn+1

]
:
Mn

�
Nn+1

−→ K>0
n+1

Proposition 1.74. The natural identifications Kn ∼= R
((
Mn

))
induce a natural isomorphism T ∼=

R
((
M
))
, that is

βm,n = idR
((
mm,n

))
ιm,n = idR

((
nm,n

))
Proof. Obvious by construction.

Theorem 1.75. The natural isomorphism R
((
M
)) ∼= T induces an isomorphism

TEL ∼= R
((
MEL

))B
Proof. This is a strightforward application of Theorem 1.37.

1.3.2 R-purely infinte elements
We want to do what we did with the monomials of TEL over R with the additive group of purely
infinite elements. Thus we first want a diagram involving some

In ∼= R
((
M>1
n

))
⊆ Kn

Now we have

M>1
n = M>1

n−1 t
(
Mn−1 �N>1

n

)
= · · · = N>1

0 t
(
M0 �N>1

0

)
t · · · t

(
Nn−1 �N>1

n−1

)
Hence

Kn ⊇ In ∼= R
((
M>1

0

))
⊕ R

((
M1 �N>1

1

))
⊕ · · · ⊕ R

((
Mn−1 �N>1

n

)) ∼= J0 ⊕ · · · ⊕ Jn
Similarly to the case of M we have that with these natural inclusions the maps ιn and βn restrict
respectively to

νn =

[
id
0

]
: In →

In
⊕

Jn+1

= In+1 µn =


0 0 0
α0 0 0

0
. . . 0

0 0 αn

 :

J0

⊕
...
⊕
Jn

−→

J0

⊕
J1

⊕
...
⊕

Jn+1
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Construction 1.76. To be a bit more formal we are to define

I0 = J0 In+1 = In ⊕ Jn+1

and inclusions in : In ↪→ Kn inductively as

i0 = j0 : J0 = I0 ⊆ K0 in+1 =
[
ιnin jn+1

]
: In ⊕ Jn+1 → Kn+1

It is then easy to check that ιn ◦ in = in+1 ◦ νn:

ιnin =
[
ιnin jn+1

] [id
0

]
= in+1

[
id
0

]
and that defining inductively

µ0 =

[
0
α0

]
: In → In+1 µn+1 =

[
µn 0
0 αn+1

]
:

In
⊕

Jn+1

−→
In
⊕

Jn+1

one verifies, again inductively, that βn ◦ in = in+1 ◦ µn

in+1µn =
[
ιnin jn+1

] [µn−1 0
0 αn

]
=
[
ιnβn−1in−1 βnjn

]
= βn

[
ιn−1in−1 jn

]
= βnin

Essentially In
µn
↪→ In+1 looks like

0⊕ J0

<
⊕ · · ·

<
⊕ Jn �

� 0⊕α0⊕···⊕αn // J0

<
⊕ · · ·

<
⊕ Jn−1

<
⊕ Jn+1

Also set In = 0 for every n ≤ −1 and µn = 0 and νn = 0 for n ≤ −1, so that for every n ∈ Z

In =
⊕
k≤n

Jk

Construction 1.77. Let I deonte the functor I : Z2 → OrderedAbGroups defined as

(m,n) //

��

(m,n+ 1)

��

(m+ 1, n) // (m+ 1, n+ 1)

I7→

Im+n νm+n //

µm+n

��

Im+n+1

µm+n+1

��

Im+n+1 νm+n+1 // Im+n+2

Essentially I looks like

· · · I−1 ν−1 //

µ−1

��

· · ·

· · · I−1 ν−1 //

µ−1

��

I0 ν0 //

µ0

��

· · ·

· · · I−1 ν−1 //

β−1

��

I0 ν0 //

µ0

��

I1 ν1 //

µ1

��

· · ·

· · · I−1 ν−1 //

µ−1

��

I0 ν0 //

µ0

��

I1 ν1 //

µ1

��

I2 ν2 //

µ2

��

· · ·

· · · · · · · · · · · · · · · · · ·

Set then IEL = lim−→P I.

Proposition 1.78. There is a natural isomorphism R((M>1)) ∼= I.

Proof. Follows from the discussion at the beginning of the subsection.
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1.3.3 Structure of MEL and IEL

We may abstract the above construction ofM from the Nn and of I from the Jn and make it functorial.

Definition 1.79. Assume A = {A(k) : l ∈ Z} is a Z-indexed family of bounded ordered abelian
groups, that is a functor A : [Z]→ OAbGrpsB: we can define a diagram

(SA) : Z→ OAbGrps (SA)(n) =
⊕
k≤n

A(k) lexicographic

(SA)(n→ n+ 1) :
⊕
k≤n

A(k) ↪→
⊕

k≤n+1

A(k)

The construction is functorial in that if we have a map ϕ : A → B, that is {ϕk : A(k) → B(k)}k∈Z
there is a map of diagrams

(Sϕ) : (SA)⇒ (SB) (Sϕ)n =
⊕
k≤n

ϕk :
⊕
k≤n

A(k)→
⊕
k≤n

B(k)

We have thus defined a functor S : Func([Z],OAbGpsB)→ Func(Z,OAbGpsB).

Lemma 1.80. The functor S : Func([Z],OAbGpsB)→ Func(Z,OAbGpsB), preserves filtered colimits:
for every filtered D and every F : D → Func([Z],OAbGps) one has a canonical isomorphism

lim−→(S ◦F ) ∼= S
(

lim−→F
)

Proof. This is a left adjoint to the functor

R : Func([Z],OAbGpsB)→ Func(Z,OAbGpsB) R(F ) = F |[Z]

that is, given X ∈ Func([Z],OAbGpsB) and Y ∈ Func(Z,OAbGpsB) there is a bijection

Hom(SX,Y ) ∼= Hom(X,RY ) (†)

natural in X and Y . To see this notice that a natural transformation ϕ : X → RY is just a collection
of maps ϕn : X(n)→ Y (n):(

Func([Z],OAbGps)
)
(X,RY ) =

∏
n∈Z

OAbGps(X(n), Y (n));

a natural transformation h• : S(X)→ Y is instead a collection of maps hn : (SX)(n)→ Y (n) satisfying
the condition hn+1|(SX)(n) = yn ◦ hn, where yn = Y (n→ n+ 1):

hn+1 =
[
hn+1|X(n+1) yn ◦ hn

]
: (SX)(n+ 1) =

X(n+ 1)
⊕

(SX)(n)
−→ Y (n+ 1).

Thus we can define the hom-set bijections † as

ϕ•

∈

� //

(
hn

def
=
[
Y (k → n) ◦ ϕk

]
k≤n

)
n∈Z∈

Func([Z],OAbGpsB)(X,RY ) oo // Func(Z,OAbGpsB)(SX,Y )(
ϕn

def
= hn|X(n)

)
n∈Z

∈

h•
�oo

∈

One can see these are compositional inverses and natural.

Example 1.81. Any raw of the above defined diagram I (or better of its version in OAbGrpsBI , P I,
that from now on,with a little abuse of notation, we denote as I) is of the form IE(m) = I ◦ Rm =
S(J ◦Rm) = S(JE(m)), and the relation actually generalizes to IE = S ◦JE . Similarly ME = S ◦NE .
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Definition 1.82. S actually extends to

S : Func(D × [Z],OAbGpsB)→ Func(D × Z,OAbGpsB)

for every small category D. Indeed any functor F : D× [Z]→ OAbGrps may be regarded as its adjunct
F[Z] : D → Func([Z],OAbGrps), then one can define S(F ) : D × Z → OAbGps as the only functor
having as Z adjunct

(SF )Z = S ◦F[Z] : D → Func(Z,OAbGrps)

α : F[Z] ⇒ G[Z]
S7→ S(α) : S ◦F[Z] ⇒ S ◦G[Z]

(application of a functor to a natural transformation: one applies the functor S, D-component wise,
S(α)d = S(αd)).

Notation As usual when working with products it may be more convenient to write S as

(SF )(d, n) = S
k≤n

F (d, k) (Sα)d,n = S
k≤n

αd,k

Example 1.83. If D is a “diagram shape” category, e.g. D = {0 → 1}, then S sends a Z-family of
morphism αk : Fk ⇒ Gk of D-shaped diagrams Fk, Gk : D → OAbGrpsB

Fk(0)
αk,0
//

fk

��

Gk(0)

gk

��

Fk(1)
αk,1
// Gk(1)

To the map of diagrams

· · · //
⊕
k≤n

Gk(0)

⊕
gk

��

� � //
⊕

k≤n+1

Fk(0)

⊕
gk

��

// · · ·

· · · //
⊕
k≤n

Fk(0) �
�

//

⊕
fk

��

⊕
αk,0

77 ⊕
k≤n

Fk(0)

⊕
fk

��

⊕
αk,0 77

// · · ·

· · · //
⊕
k≤n

Gk(1) �
�

//
⊕
k≤n

Gk(1) // · · ·

· · · //
⊕
k≤n

Fk(1)

⊕
α1,k

77

� � //
⊕
k≤n

Fk(1)

⊕
α1,k

77

// · · ·

Remark 1.84. One easily sees that if we shift the index of the discrete argument, one gets a functor
shifted the same way: if F : D × [Z]→ OAbGrps then we have

S(F ◦ (idD, S)) = S(F ) ◦ (idD, S)

Actually a stronger equivariance property holds when precomposing with any endofunctor L : D → D,
thus we have, for every l ∈ Z,

S(F ◦ (L, Sl)) = S(F ) ◦ (L, Sl)

Example 1.85. In the last two sections we applied the construction to the functors N, J : Z× [Z]→
OAbGrps We also defined natural transformations τ : J → N ◦ (idZ, S) and λ : N → J ◦ (S, S−1), these
give maps, via the S construction

S(τ) : I ⇒M(idZ, S) S(λ) : M ⇒ I(S, S−1)

Proposition 1.86. Let F : D × [Z]→ OAbGrpsB with D filtered, then

lim−→
Z

(
S(lim−→

D

F[Z])
) ∼= lim−→

D×Z

(
SF

)
i.e. lim−→

n∈Z
S
k≤n

( lim−→
d∈D

F (d, k)) ∼= lim−→
d∈D
n∈Z

(
S
k≤n

F (d, k)
)
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Proof. Idea: it follows from Lemma 1.80

lim−→(SF ) ∼= lim−→
Z

lim−→
D

(SF )Z ∼= lim−→
Z

lim−→
D

S ◦F[Z]
∼= lim−→

Z

(
S(lim−→

D

F[Z])
)

Example 1.87. We exemplify the last proof and proposition contextualizing the construction to the
case F = J . As we saw we defined I as I = S(J), that is I is defined by its adjunct IE = S ◦JE .
Lemma 1.80 is saying that there is a natural isomorphism

lim−→ IE ∼= S
(

lim−→ JE
)

This telling us that as bounded ordered abelian groups

lim−→(IL(n)) =
(

lim−→ IE
)

(n) ∼= S
(

lim−→ JE
)

(n) =
⊕
k≤n

lim−→(JL(n)) =
⊕
k≤n

J∞,k

and that the maps ν∞,n =
(

lim−→ IE
)
(n→ n+1) = lim−→ ν•,m become, via this isomorphism, the inclusions⊕

k≤n

J∞,k ⊆
⊕

k≤n+1

J∞,k

The natural isomorphism ηn : lim−→(IL(n))→
⊕

k≤n J∞,k is given by ηn = lim−→ η•,n where

ηm,n : Im,n =
⊕
k≤n

J−m,m+k →
⊕
k≤n

J∞,m+k ηm,n =
⊕
k≤n

αm,m+k

where Jm,n = J(m,n) = Jm+n.

Applying this to the functor M we easily get the following result

Theorem 1.88. The multiplicative group of monomials of transseries decomposes as MEL ∼= N�Z∞ ,
moreover the isomorphism holds at the level of B-groups (i.e. they have the same B-structure).

Corollary 1.89. There is a canonical isomorphism TEL ∼= R
((
N�Z∞

))B.
As a byproduct of this construction we also get the group of monomials of TLn : in fact, the natural

isomorphism R((M)) ∼= T restricts to a natural isomorphism TL(n) ∼= R((ML(n))), from this we deduce

TLn ∼= R((lim−→ML(n)))B = R((
⊙
k≤n

N∞,k))B

1.3.4 Analiticity of exp and log, IEL = log(MEL)

We saw that the maps λ and τ induced maps

Sλ : M ⇒ I ◦ (S, S−1) S τ : I ⇒M ◦ (idZ, S)

it is easy to check that(
(S τ)(S, S−1)

)
◦ (Sλ) = S(a)

(
(Sλ)(id, S)

)
◦ (S τ) = S(α)S(ι)

so that
lim−→S(τ) : MEL → IEL∞ lim−→S(λ) : MEL → IEL

are inverse isomorphism, in fact they are the restrictions of the exp and log to the group of monomials
and of purely infinite elements. This follows from a formal check that the following diagrams natural
transformations commute

M
Sλ +3

��

I ◦ (S, S−1)
S ν +3 I ◦ (S, id)

��
R
((
M
))>0 L +3 R

((
M ◦ (S, id)

))
I

S τ +3

��

M ◦ (id, S)

��
R
((
M
)) E +3 R

((
M ◦ (id, S)

))>0

At the same time one can check that the defined exp an log satisfy the analiticity condition on
infinitesimals, this should be somewhat easier since after the multiplicative or additive decomposition
the image of infinitesimal elements does not require to rise the logarithmic index m or the exponential
one n: if x ∈ T (n,m) = Kn,m ∼= Tn+m,log(x) is infinitesimal then exp(x) ∈ Kn,m.
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1.3.5 Classical notations
Now that we have defined TEL, exp and log we are able to give a more intuitive definition of what an
element of TEL looks like. Let

TEL 3 x = βι0,0(t1)

Notice that x > R ⊆ TEL. We then have the following

expk(x) ∈ βιm,n(Km+n) ⇐⇒ k ≥ m− n

Let us write

• For every m,n ∈ Z

Tm+n,logm(x) = βιm,n(Km+n)

Jn+m,logm(x) = βιm,njm,nJn+m

Nm+n,logm(x) = βιm,njm,nNm+n

the former is the field generated by logm(x) doing infinite sums and at most m + n nested
exponentials, the second is the R-vector space consisting of elements of Km+n,logm(x) whose
support has monomials > Tm+n−1,logm(x), and the third is the set of monomials used to build
Tm+n,logm(x) from Tm+n−1,logm(x) as Tm+n,logm(x) = Tm+n−1,logm(x)((Nm+n,logm(x))), that is:

– if n+m ≥ 1 then Nm+n,logm(x) = exp Jm+n−1,logm(x)

– if instead n+m = 0 then N0,logm(x) = logm(x)R = exp(logm+1(x)R),

– finally if m+ n < 0 then Nn+m,logm(x) = {1}.

Analogously we can set

Im+n,logm(x) = βιm,nim,nIm+n =
⊕

k≤m+n

Jm+k,logm(x)

Mm+n,logm(x) = βιm,nim,nMm+n =
⊙

k≤m+n

Nm+k,logm(x)

In such a way one has that

Tm+n,logm(x) = R((Mm+n,logm(x))) Im+n,logm(x) = R((M>1
m+n,logm(x)))

• for every m ∈ Z, TElogm(x)
def
= βm,∞(TEm) =

⋃
n∈Z

Tn+m,logm(x) this is the familiar field of log-free

transseries generated by logm(x): it is the smallest field closed by exponentials and infinite
ambient sums.

• TLexpn(x) = ι∞,n(TEn ) =
⋃
m∈Z

Tn+m,logm(x) this is the smallest filed containing expn(x) closed by

infinite ambient sums and logarithms. We can also set

JLexpn(x) = ι∞,n ◦ j∞,nJ∞ =
⋃

m≥−n

Jn+m,logm(x)

1.3.6 Levels
Levels are a coarse notion of magnitude. They actually induce a valuation on the multiplicative group
of monomials.

Definition 1.90. Let f, g ∈ TEL be two infinite elements |f |, |g| > R, we say that f, g have the same
level if and only if there is m ∈ N such that logn(|f |) = logn(|g|).

Lemma 1.91. Let f ∈ TEL be an infinite element, then there is a unique n = lv(f) ∈ Z such that for
sufficiently high m ∈ N, lm logm+n(f) = logm(x). Moreover lv(f) = lv(g) if and only if f and g have
the same level.
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Proof. To see the first notice that lm◦log = lm◦log ◦lm, hence it suffices to show that (log ◦lm)m+k(f) =
logm(x) for a sufficiently high k. Also it suffices to prove it for the case f = m a monomial. We proceed
by induction: if m ∈M>1

0,logm(x) for some m, then we are done, assume m ∈Mn,logm(x), for n ≥ 1 then

m ∈Mn,logm(x) = N0,logm(x) �N1,logm(x) � · · · �Nn,logm(x)

log(m) ∈ In,logm+1(x) = J0,logm+1(x) ⊕ J0,logm(x) ⊕ · · · ⊕ Jn−1,logm(x)

so either lm(log(m)) ∈ N>1
0,logm+1(x), and in such a a case we are done by the base case, or lm(log(m)) ∈

Mn−1,logm(x), and we are done by inductive hypothesis.

Definition 1.92. For an element f ∈ TEL we extend the definition of lv to a function lv : TEL →
{−∞} ∪ Z as follows

lv(f) =


lv(f) if |f | > R
lv(1/f) if f ∈ o(1)

−∞ if f ∈ O(1) \ o(1)

Remark 1.93. With such a definition lv(f) = lv lm(f), so that actually one can reduce to the study
of lv : MEL → {−∞}∪Z. Also note note that lv(1) = −∞ and lv(fg) ≤ max{lv(f), lv(g)}, so that lv
is a valuation on the multiplicative group MEL.

The proof of the Lemma above suggests that lv(f) is somehow related to stage at which f first
arises in the inductive construction of TEL. We make this precise in what follows.

Lemma 1.94. The diagram

Km,n

βm,n

��

ιm,n
// Km,n+1

βm,n+1

��

Km+1,n

ιm+1,n
// Km+1,n+1

is cartesian.

Proof. It suffices to prove that if x ∈ Km,n+1 and y ∈ Km+1,n are such that βm,n+1(x) = ιm+1,n(y)
then there is z ∈ Km,n such that βm,n(z) = y and ιm,n(z) = x: let

x =
∑
i<α

niki ki ∈ Km+1,n−1, ni ∈ Nm+1,n

then βm,n+1(x) is
βm,n+1(x) = βm,n((am,n))

∑
i<α

niki =
∑
i<α

am,n(ni)βm,n(ki)

hence if βm,n+1(x) = ιm+1,n(y) it has to be ni 6= 1⇒ ki = 0 and x = ιm,n(z) for some z ∈ Km,n. Now
from ιm,n+1(y) = βm,n+1ιm,n(z) = ιm,n+1βm,n(z) we also get y = βm,n(z).

Remark 1.95. If we want to see this in TEL the statement above is just

Km+n+1,logm(x) ∩Km+n+1,logm+1(x) = βιn+1,mKn,m ∩ βιn+1,mKn,m = βιm,nKm,n = Km+n,logm(x)

One easily sees that this implies that in general

βιm,nKm,n ∩ βιm′,n′Km′,n′ = βιmin{m,m′},min{n,n′}Kmin{m,m′},min{n,n′}

or in a rather cumbersome classical notation

Km+n,logm(x) ∩Km′+n′,logm′ (x) = Kmin{m,m′}+min{n,n′},logmin{m,m′}(x)

Corollary 1.96. For every f ∈ TEL\R, there is a minimum (m,n) ∈ Z2 such that f ∈ Km+n,logm(x) =

βιm,nKm,n. Clearly in such a situation m+ n ≥ 0.

Proof. Follows from the Remark above.

Proposition 1.97. Let f ∈ Km+n,logm(x) \Km+n−1,logm(x) be infinite, then lv(f) = n.
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Proof. We prove this by induction on m+n: if m+n = 0 then f ∈ K0,logm(x) \R and for some r ∈ R>0

one has
lm log(f) = lm log lm(f) = lm log(logm(x)r) = lm(r logm+1(x)) = logm+1(x)

hence lv(f) = −m = n.
As for the inductive step assume m+ n ≥ 1, if f ∈ Km+n,logm(x) \Km+n−1,logm(x) we have

lm(f) = m = nn+m · · · n0 nk ∈ Nk,logm(x); nm+n > 1

Now from this and the fact that m+ n ≥ 1 it follows that

lm(logm) ∈ log(N>1
m+n,logm(x)) = J>0

m+n−1,logm(x) ⊆ Km+n−1,logm(x) \Km+n−2,logm(x)

and this concludes the inductive argument as lv(f) = lv
(
lm log(f)

)
+ 1.

Corollary 1.98. For every f ∈ TEL one has f ∈ TLexpn(x) if and only if lv(f) ≤ n.

Proof. It suffices to show this for f infinite. This is a straightforward application of the Proposition
above since if f ∈ TLexpn(x) if and only if there is m such that f ∈ Km+n,logm(x).

Corollary 1.99. The valuation lv : MEL =
⊙

n∈Z N
L
expn(x) → Z is the one induced by the decomposi-

tion: namely lv(NL
expn(x) \ {1}) = n.

1.4 A bounded chain isomorphism IEL ∼=
(
IEL
)>0

An interesting fact concenrning N∞ is that there is a bounded chain isomorphism N∞ ∼= N>1
∞ , since

we know that (N∞, ·) ' (J∞,+) via lim−→S(τ) it suffices to prove an analogous result for J∞.

It turns out that actually more holds: we prove one can build an isomorphism γ : TL ' J∞ in
OAbGrpsB. We will build γ as a limit of a natural transformation γ• form TC0, it turns out that in
order to have a simpler base case we will use the virtual modified version J̃0(m) = J̃m of the diagram
J0 as presented in Remark 1.46.

Construction 1.100. Let F : OFields → ChainsI be the forgetful functor and •>0 : OFields →
ChainsI be the functor taking a field to its positive cone. Fix h : F ⇒ •>0 a natural isomorphism
between these functors such that hk(0) = 1 for every field k. Notice that such a natural transformation
exists, as any formula for a function defining a chain isomorphism between k and k>0 definable in the
language of fields and such that 0 7→ 1 will do. As an example take

hk : k → k>0 hk(x) =

{
x+ 1 if x > 0

1
1−x if x ≤ 0

Now define a family of ordered abelian groups isomorphism γn : Kn → J̃n inductively as follows

γ−1 = idR : K−1 → J̃−1 γn+1 = idKn
((

E(γ>0
n ◦ h ◦ γ−1

n )
))

The idea is that we are using the ordered abelian group isomorphism γn : Kn → Jn to define a chain
isomorphism γ>0

n ◦ h ◦ γ−1
n : Jn → J>0

n : this is well defined because γn is invertible and, being additive
and order preserving, restricts to a map between the positive cones γ>0

n : Kn → J>0
n . Then one defines

γn+1 as the Kn-linear map that acts as the exp conjugate E(γ>0
n ◦ h ◦ γ−1

n ) of the above defined chain
isomorphism.

Proposition 1.101. For the above defined γn we have

Kn γn //

βn

��

	

Jn
αn

��

Kn+1 γn+1 // Jn+1

αn ◦ γn = γn+1 ◦ βn

that is γ• : TC|N∪{−1} ⇒ J̃0 is a natural isomorphism of diagrams of ordered abelian groups.
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Proof. We procede by induction. Case n = −1 is the following

γ0 ◦ β−1 = idR
((

E(γ>0
−1 ◦ h ◦ γ−1

−1 : J−1 → J>0
−1)
))
◦ idR

((
t0 7→ t0

))
=

= idR
((

E(γ>0
−1 ◦ h ◦ γ−1

−1 ◦ 0)
))

= idR
((
t0 7→ t1

))
= α−1 = α−1 ◦ γ−1

As for the inductive step

αn+1 ◦ γn+1 = βn
((
t•(α>0

n )
))
◦ idKn

((
E(γn ◦ h ◦ γ−1

n )
))

=

= βn
((

E(α>0
n ◦ γ>0

n ◦ h ◦ γ−1
n )
))

γn+2 ◦ βn+1 = idKn+1

((
E(γ>0

n ◦ h ◦ γ−1
n+1)

))
◦ βn

((
E(αn)

))
=

= idKn
((

E

(
idJn

<
⊕ (γ>0

n+1 ◦ h ◦ γ−1
n+1)

)))
◦ βn

((
E(0

<
⊕ αn : 0

<
⊕ Jn → Jn

<
⊕ Jn+1)

))
=

= βn
((

E(γ>0
n+1 ◦ h ◦ γ−1

n+1 ◦ αn)
))

Hence it suffices to show that

α>0
n ◦ γ>0

n ◦ h ◦ γ−1
n = γn+1 ◦ h ◦ γ−1

n+1 ◦ αn

but this follows from the inductive hypothesis and the fact that h ◦βn = β>0
n ◦h because h is a natural

transformation:

α>0
n ◦ γ>0

n ◦ h ◦ γ−1
n = γ>0

n+1 ◦ β>0
n ◦ h ◦ γ−1

n = γ>0
n+1 ◦ h ◦ βn ◦ γ−1

n

γ>0
n+1 ◦ h ◦ γ−1

n+1 ◦ αn = γ>0
n+1 ◦ h ◦ βn ◦ γ−1

n

Definition 1.102. Let γ = lim−→ γ• : TL ∼−→ J∞. It is an isomorphism in OAbGrpsB.

Corollary 1.103. There is a B-chain isomorphism J∞ ' J>0
∞ .

Proof. This just follows from the fact that J∞ ' TL as ordered abelian group and that the latter is a
field.

In order to prove that IEL '
(
IEL

)>0 it suffices hence to prove that if A ' A>0 then A⊕Z ' A⊕Z.
We will prove a more general result, though in order to give the idea of the construction we first work
out the euristic of this exmple.
As a matter of notation write A⊕Z = A((tZ))B = A[tZ].

We will prove that both A[tZ]>0 and A[tZ] are both chain isomorphic to Z
>
×A[t(−∞,0]].

Notice that

A[t(−∞,n+1]] =
(
A[t(−∞,n]] +A<0tn+1

) <
tA[t(−∞,n]]

<
t
(
A[t(−∞,n]] +A>0tn+1

)
'

'
(
A[t(−∞,−1]]

<
⊕A<0

) <
tA[t(−∞,n]]

<
t
(
A[t(−∞,−1]]

<
⊕A>0

)
'

'
(
A[t(−∞,−1]]

<
⊕A

) <
tA[t(−∞,n]]

<
t
(
A[t(−∞,−1]]

<
⊕A

)
'

' A[t(−∞,0]]
<
tA[t(−∞,n]]

<
tA[t(−∞,0]]

From this one easily infers that the order type of A⊕Z = A[tZ] is

Z×A[t(−∞,0]] = · · ·
<
tA[t(−∞,0]]

<
tA[t(−∞,0]]

<
tA[t(−∞,0]]

<
t · · ·

In order to be formal on the isomorphism we first need to fix the chain isomorphism h : A
∼→ A>0, we

will also need an isomorphism A
∼→ A<0, this is just given by a 7→ −h(−a).

Now the isomorphism behind the heuristics above will thus send A[t(−∞,0]] in {0} × A[t(−∞,0]] in the
obvious way, and then send

A[t(−∞,n]] + tn+1A>0 → {n+ 1} ×
(
A[t(−∞,−1]] +A

)
tn+1a+ y 7→ h−1(a) + t−n−1y

A[t(−∞,n]] + tn+1A<0 → {−n− 1} ×
(
A[t(−∞,−1]] +A

)
tn+1a+ y 7→ −h−1(−a) + t−n−1y

Thus we got the formula for a chain isomorphism f : A[tZ]
∼−→ Z×A[tZ]

f(x) =

{(
sgn(x)le(x), sgn(x)h−1(|lc(x)|) + (x− lt(x))/lm(x)

)
if le(x) > 0

(0, x) if x ∈ A[t(−∞,0]]
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As it comes to A[tZ]>0, we have

A[t(−∞,n+1]]>0 =
(
A[t(−∞,n]] + tn+1A

)>0
= A[t(−∞,n]]>0 <t

(
A[t(−∞,n]] + tn+1A>0

)
'

' A[t(−∞,n]]>0 <t
(
A[t(−∞,−1]]

<
⊕A>0

)
' A[t(−∞,n]]>0 <tA[t(−∞,0]]

Again from this one can infer the order type of A[tZ]>0 is Z×A[t(−∞,0]], this time we send

A[t(−∞,n]] + tn+1A>0 → {n} ×
(
A+A[t(−∞,−1]]

)
tn+1a+ y 7→ h−1(a) + t−n−1y

Thus getting the following formula for a chain isomorphism g : A[tZ]>0 → Z×A[t(−∞,0]]

g(x) =
(
le(x), h−1(lc(x)) + (x− lt(x))/lm(x)

))
Notice that if A has a bounded structure, then the bounded subsets of A[tZ] are those with uni-

formly bounded supports and sets of coefficients, the maps f and g, then both induce the same bound
structure on Z×A[t(−∞,0]], whose bounded subsets are the sets with projections on Z and on A[t(−∞,0]]
both bounded, with the usual structure.

The above discussion proves the following

Theorem 1.104. If A is an object in OAbGrpsB such that there is a ChainB isomorphism A ' A>0,
then there is an isomorphism in ChainsB

ψ : A⊕Z → (A⊕Z)>0

Corollary 1.105. There is an isomorphism g : IEL '
(
IEL

)>0 in ChainsB.

Theorem 1.106. There is an isomorphism of ordered abelian groups

G : TEL → IEL

otherwise stated the field of transseries IEL is an ω-field with the ω-map Ω = exp ◦G.

Proof. Define G as

G = idR((exp ◦g ◦ log)) : R
((

exp(IEL)
))B → R

((
exp(IEL)>1

))B
where g : IEL →

(
IEL

)>0 is the ChainsB-isomorphism of the previous corollary.
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Chapter 2

Surreal Numbers

2.1 Basic Definitions
The goal of this section is to define the surreal numbers as a an ordered field and prove some basic
fundamental facts. Definition and constructions are to be intended in a well founded set theoretic
universe with sets and proper classes, and satisfying at least NBG axioms.

2.1.1 Surreals as sequences
Let On denote the proper class of Von Neumann Ordinals.

Definition 2.1. We define the surreal numbers as the class

No = 2<On = {0, 1}<On =
⋃{
{0, 1}α : α ∈ On

}
that is the class of {0, 1} valued sequences from some α, as α ranges in the class of ordinals. As a
matter of utility we also establish the following notation for some subsets of No:

Noα =
⋃
γ<α

{0, 1}γ

For x ∈ No we define its length, le(x) as the domain of the sequence x: that is, set theoretically

le(x) = dom(x) = min{α ∈ No : x ∈ Noα+1}

The class No comes with a natural partial order relation given by set theoretic inclusion, i.e. since we
are talking about functions, function extension1: we call this simplicity relation and write it as ≤s.

x ≤s y ⇔ x ⊆ y ⇔ l(x) ≤ l(y) & ∀i ∈ l(x), x(i) = y(i)

If x ≤s y we say that x is simpler than y. We readily notice that ≤s makes No into a complete
meet-semilattice with meet given by

x
s
∧ y = x|β = yβ for β = sup{α ∈ On : x|α = y|α}

s∧
A =

(⋂
A
)∣∣∣
β

for β = sup{α ∈ On : α ⊆ dom(
⋂
A)}

It actually happens that
∧s

A exists and makes sense even when A is a proper class

Remark 2.2. The simplicity relation is a well founded partial order: if xi is a strictly decreasing
sequence for <s then le(x) is strictly decreasing for the usual order < = ∈ on On, hence the sequence
cannot be infinite. The simplicity relation plays a central role in defining basic operations on No.

Notation It will come in handy later to have some notation for sequence concatenation: we will
write x_y to denote the concatenation of sequences of form two ordinals. More precisely if dom(x) = α
and dom(y) = β, with α, β ∈ On, x_y will denote the sequence with domain dom(x_y) = α + β
(ordinal addition) and

(x_y)(γ) =

{
x(γ) if γ < α

y(γ − α) if γ > α
1We will make use of the convention that function “are” set theoretically their graphs, that is f : X → Y means

f ⊆ X × Y and f satisfies ∀x ∈ X∃!y ∈ Y (x, y) ∈ f .
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2.1.2 A total order
Let us define the following function −[−] : No×On→ {0, e, 1} for which we use the infix notation

x[α] =

{
e if α ≥ le(x)

x(α) if α < le(x)

Remark 2.3. If x, y ∈ No and α = le(x
s
∧ y) then x[γ] = x(γ) = y(γ) = y[γ] for any γ < α and

x[α] 6= y[α].

The total order classically defined on No is the lexicographic order w.r.t. to this evaluation function
and the order 0 < e < 1:

Definition 2.4. On No we define the total order < as the only order satisfying

x < y ⇔ x[le(x
s
∧ y)] < y[le(x

s
∧ y)]

One easily sees that this is a total order the same way one proves lexicographic orders are total.
We say that a class C ⊆ No is convex if it is convex w.r.t. <, that is if

∀x∀y∀z ({x, y} ⊆ C)&(x < z < y)→ z ∈ C

If C,D are classes of surreal numbers we will use C < D to signify ∀c ∈ C, ∀d ∈ D, c < d, similarly if
x ∈ No, x < C (resp. x < C) will mean that ∀c ∈ C one has x < c (resp. c < x).

Example 2.5. For every x ∈ No the set {y ∈ No : x ≤s y} is a convex class.
If A,B are subsets of No, then one can consider the convex classes

(A;B) = {y ∈ No : A < y < B} [A;B] = {y ∈ No : A ≤ y ≤ B}

Fact 2.6. Any convex class C has a simplest element, i.e. a minimum for ≤s, and it is given by
x =

∧s
C.

Proof. It suffices to prove x ∈ C: if not, since C is convex it has to be either x < C either C < x.
Assume the first: since x s

∧ c = x by definition of < it would mean that for every c ∈ C, c[le(x)] = 1,
but this would imply that x_1 ≤s c for every c ∈ C, contradiction.

We remark two crucial easy facts relating ≤s and ≤ for future reference:

Fact 2.7. The following hold

i ∀x, y ∈ No, x ≤s y ≤s z →
(
x < z ↔ x < y

)
ii ∀x, y ∈ No, x ≤ x

s
∧ y ≤ y

2.1.3 Completeness properties
It happens that the Noα+1 enjoy a very strong form of completeness as will be shown in Proposition 2.9

Lemma 2.8. The following hold

i) for every α ∈ On, every element of Noα has a successor and a predecessor in Noα+1

∀x ∈ Noα,
(
x ; x_1_{0}α−(le(x)+1)

)
∩Noα+1 = ∅

∀x ∈ Noα,
(
x_0_{1}α−(le(x)+1) ; x

)
∩Noα+1 = ∅

ii) if λ ∈ On is a limit, then one has that (Noλ, <) is a dense order

∀x, y ∈ Noλ, x < y → ∃z ∈ Noλ, x < z < y

where α− (le(x) + 1) denotes the smallest ordinal γ such that le(x) + 1 + γ = α.

Proposition 2.9. Given a class A ⊆ No, for every β ∈ On, if {x ∈ Noβ+1 : x ≥ A} 6= ∅ then
∃aβ = min{x ∈ Noβ+1 : x ≥ A}, moreover for any γ ≥ β one has aγ still exists and aβ ≤s aγ ,
aβ ≥ aγ .

39



Proof. We do induction on β. If β = 0, Noβ = ∅ and there is nothing to prove.

• β ⇒ β + 1: if {x ∈ Noβ+2x ≥ A} 6= ∅ and {x ∈ Noβ+1 : x ≥ A} = ∅, then {x ∈ Noβ+2 : x ≥
A} =

{
{1}β+1

}
, for {1}β+1 has a predecessor in Noβ+2, namely {1}β which is also in Noβ+1; if

instead {x ∈ Noβ+1 : x ≥ A} 6= ∅ by inductive hypothesis we can consider aβ = min{x ∈ Noβ+1 :
x ≥ A}, we see then that aβ has a predecessor in Noβ+2, namely aβ_0_{1}(β+1)−(le(a)+1), hence
aβ+1 exists and is aβ+1 ∈

{
aβ_0_{1}(β+1)−(le(a)+1), aβ

}
.

• γ < β ⇒ β with β limit: again if {x ∈ Noγ+1 : x ≥ A} = ∅ for every γ < β and {x ∈ Noβ+1 :
x ≥ A} 6= ∅, then since {1}β = min{x ∈ Noβ+1 : x > Noβ} we have that in this case aβ = {1}β .
If instead ∃γ0 s.t. {x ∈ Noγ0+1 : x ≥ A} 6= ∅, then ∀γ ≥ γ0 we have {x ∈ Noγ+1 : x ≥ A} 6= ∅:
by inductive hypothesis we get a sequence {aγ : β > γ ≥ γ0} such that γ < γ′ ⇒ aγ ≤s aγ′ ,
hence we can define x =

⋃
{aγ : γ < β}: this is a surreal number of length ≤ β hence x ∈ Noβ+1.

We further distinguish two cases:

i If le(x) = β, we claim that aβ = x. Let y ∈ Noβ+1 and y < x, then y ≤ x
s
∧ y < x: one

has x s
∧ y <s x and there is a aγ such that x s

∧ y <s aγ <s x and since x > x
s
∧ y by Fact 2.7.i

x
s
∧ y < aγ . Finally since x s

∧ y ∈ Noγ+1 it follows that there is a ∈ A s.t. y ≤ x s
∧ y < a.

ii if le(x) < β, then aβ ∈ {x, x′}, with x′ = x_0_{1}β−(le(x)+1). Again there are two cases:
either x′ ≥ A, in such a case given any y < x′, said y′ = y

s
∧x′ we have le(y′) < β and

y ≤ y′ < x′; in particular y′ < x and y′ ∈ Noγ+1 for some γ < β and γ ≥ le(y), γ ≥ le(x) so
that y′ < x = aγ and by inductive hypothesis there is a ∈ A such that a > y′ ≥ y. If instead
there is a ∈ A such that x ≥ a > x′ we easily get that for any y < x with y ∈ Noβ+1 one
has y ≤ x′ < a (because x′ is the predecessor of x in Noβ+1).

This concludes the induction argument.

Remark 2.10. The same statement holds for the opposite order >. In particular we get that every
Noα+1 is a Dedekind-complete total order.

Remark 2.11. The Noα+1 are never dense orders: we saw there are always elements with successors
and predecessors. Instead Noλ, for λ a limit ordinal, are always dense orders, but never complete
orders.
Notice that if λ is limit then the Dedekind-MacNeille completion of Noλ lies naturally in Noλ+1 and
it is a dense compete order: this happens because every Dedekind cut2 of Noλ has one and only one
separator3 in Noλ+1.

2.1.4 Representations
Definition 2.12. Given a couple of sets A,B ⊆ No, s.t. A < B, we introduce the following notation
for the simplest element of the convex class (A;B),

(A|B)
def
=

s∧
(A;B)

A representation of x is a couple of sets A,B such that A < B and x = (A|B). Among representations
we distinguish the simple ones: a representation x = (A|B) is simple if the convex class (A;B) equals
{y ∈ No : x ≤s y}.

Definition 2.13. Let A,B ⊆ No be classes, we say that A is cofinal in B if

∀b ∈ B, ∃a ∈ A, b ≤ a

that is to say A is cofinal in the class {x ∈ No : ∃b ∈ B, x ≤ b}. Analogously we say that A is coinitial
in B if

∀b ∈ B, ∃a ∈ A, b ≥ a

One can estimate the length of (A|B) in terms of the length of elements in A and B
2 A Dedekind cut of a poset (P,<) can be defined as a couple (L,U) of subsets of P such that L ≤ U , maximal

among the couples of subsets satisfying this property; in the case of a total order it is the same as requiring L ∪ U = S.
Notice that in general if (L,U) is a cut |L ∩ U | ≤ 1, and equality holds if and only if (L,U) is a principal cut, that is
L = {x : x ≤ g} and U = {x : x ≥ g}, whereg is the element generating the cut.

3 we can define a separator of a dedekind cut (L,U) of a poset P in a superposet P ′ ⊇ P as an element x ∈ P ′ such
that L ≤ x ≤ U : clearly if (L,U) is principal generated by g, then g is a separator.
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Lemma 2.14. Assume A,B ⊆ No and A < B, then le(A|B) ≤ sup{le(A ∪B) + 1}.

Proof. Let x = (A|B), if it were le(x) > sup{le(A ∪ B) + 1} = α we could consider x|α. Since every
element in A ∪ B has length strictly less than α, we would have (by Fact 2.7.i) A < x|α < B against
the fact that x is ≤s-minimal in (A;B).

Remark 2.15. Assume A,B,C,D ⊆ No are classes and C < D, so that (C;D) is nonempty. Then
(A;B) ⊆ (C;D) if and only if A is cofinal in C and B is coinitial in D. If this is the case we say that
the couple (A,B) is cofinal in (C,D).

From the remark above we immediately infer

Fact 2.16. The following hold

i If (A,B) is cofinal in (C,D) and (C|D) ∈ (A;B) then (A|B) = (C|D).

ii If (A,B) and (C,D) are mutually cofinal, then (A|B) = (C|D).

Among simple representations we distinguish a special one.

Definition 2.17. For x ∈ No denote

L(x) = {y ∈ No : y ≤s x, y < x} U(x) = {y ∈ No : y ≤s x, y > x} S(x) = L(x) ∪ U(x)

respectively the set of lower initial segments, upper initial segments and just initial segments of x.
The standard representation of x is the couple (L(x),U(x)).

Proposition 2.18. For every x ∈ No one has that x = (L(x)|U(x)), and (L(x),U(x)) is a simple
representation of x.

Proof. It suffices to notice that (L(x);U(x)) = {y ∈ No : x ≤s y}. This follows from the definition of
the order.

The standard representation enjoys a very special property

Proposition 2.19. If x = (A|B) then (A,B) is cofinal in (L(x),U(y)).

Proof. Let x′ ∈ L(x), then x′ < x < B, since x is ≤s-minimal in (A;B) and x′ <s x it cannot be
x′ ∈ (A;B); by convexity of (A;B) and since x′ < B it has to be x′ < (A;B) which is to say there is
a ∈ A s.t. x′ ≤ a. The case of x′′ ∈ U(x) is analogous.

2.2 An ordered field structure
In this section the basic operations +, · on surreal numbers are defined, and it is proved that they make
No into a totally ordered field. The ideas of the proofs in the presentation follow quite closely the ones
found in [6].

2.2.1 Sums: an ordered abelian group structure
We define a notion of sums of surreal numbers which makes them into an ordered abelian group.
The definition is by transfinite induction and not so difficult, it is however archetypal of other more
complicate definitions of operations on surreal numbers. The inductive definition could be made on
(le(x), le(y)) ∈ On×On with the product well partial order: this would though lead to some redundant
inductive statements. In the end it is better done by induction on le(x)⊕ le(y) where ⊕ is the natural
(Hessemberg) sum of ordinals.

Proposition 2.20. There is one and only class function _ + _ : No × No → No satisfying the
recursive relation

x+ y =
(
L(x) + y ∪ x+ L(y)

∣∣U(x) + y ∪ x+ U(y)
)

(SumInd)

moreover the following hold

∀x, y, z ∈ No, x < y →

{
x+ z < y + z

z + x < z + y
le(x+ y) ≤ le(x)⊕ le(y) (SumOrd)
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Proof. It suffices to prove by simultaneous induction on α the following 3 statements P1α, P2α, P3α.

∀x, y ∈ No, le(x)⊕ le(y) ≤ α→ L(x) + y ∪ x+ L(y) < U(x) + y ∪ x+ U(y) (P1α)

which is to say x + y =
(
L(x) + y ∪ x + L(y)

∣∣U(x) + y ∪ x + U(y)
)
is well defined for every x, y such

that le(x)⊕ le(y) ≤ α: notice that for every for every x′ ∈ L(x), y′ ∈ L(y), x′′ ∈ U(x), y′′ ∈ U(y) one
has that le(x) + le(y′), le(x′) + le(y), le(x) + le(y′′) and le(x′′) + le(y) all are ordinals < α so that the
sets appearing in the definition of x+ y are already defined assuming P1γ for every γ < α. The other
two statements are

∀x, y, z ∈ No,


le(x)⊕ le(z) ≤ α
le(y)⊕ le(z) ≤ α
x < y

→
{
x+ z < y + z

z + x < z + y

}
(P2α)

∀x, y ∈ No, le(x)⊕ le(y) ≤ α→ le(x+ y) ≤ α (P3α)

If α = 0, P1α, P2α and P3α are trivial as (∅; ∅) = 0.
Assuming the three hold for every β < α we prove

P1α By P2<α we have that for any x′ ∈ L(x), y′ ∈ L(y), x′′ ∈ U(x), y′′ ∈ U(y)

x+ y′ < x+ y′′ x+ y′ < x′′ + y′ < x′′ + y

x′ + y < x′′ + y x′ + y < x′ + y′′ < x+ y′′

P2α If x < y then x ≤ x s
∧ y ≤ y and one of the inequalities is strict: assume for example x ≤ x s

∧ y < y,
then x s

∧ y ∈ L(y) so x s
∧ y + z < y + z by definition via P1α, similarly we get x + z ≤ x

s
∧ y + z,

for if x 6= x
s
∧ y then actually also x s

∧ y ∈ U(x). Finally one sees x + z ≤ x
s
∧ y + z < x + y. The

case with z + • is analogous.

P3α by P3<α, for every y′ ∈ L(y), le(x + y′) ≤ le(x) + le(y′) < α, hence sup{le(x + L(y)) + 1} ≤ α.
The same statement holds for x+U(y), L(y) +x and U(y) +x, thus by Lemma 2.14 we conclude
le(x+ y) ≤ α.

Definition 2.21. The above function + is called sum of surreal numbers.

Proposition 2.22. The sum of surreal numbers + enjoys the following properties

i) Uniformity of the representation: given any two representations x = (A|B), y = (C|D) one has

x+ y =
(
A+ y ∪ x+ C

∣∣B + y ∪ x+D
)

ii) (No,+, <, 0) is an ordered abelian group.

Proof. i. By Proposition 2.19 and monotonicity of + in both arguments, A + y is cofinal in L(x) + y
and x+C is cofinal in x+L(y): it follows that A+ y∪x+C is cofinal in L(x) + y∪x+L(y), similarly
y +B ∪ x+D is coinitial in U(x) + y ∪ x+ U(y). The statement then follows from Fact 2.16.ii.
ii. Associativity : by point i we can write

(x+y)+z =
(
(L(x)+y)+z∪(x+L(y))+z∪(x+y)+L(z)

∣∣(U(x)+y)+z∪(x+U(y))+z∪(x+y)+U(z)
)

x+(y+z) =
(
L(x)+(y+z)∪x+(L(y)+z)∪x+(y+L(z))

∣∣U(x)+(y+z)∪y+(U(x)+z)∪x+(y+U(z))
)

and an inductive argument on le(x)⊕ le(y)⊕ le(z) allows to conclude that (x+ y) + z = x+ (y + z).
Commutativity : 0 + 0 = 0 then proceed by induction and get

x+y =
(
L(x) +y∪x+L(y)

∣∣U(x) +y∪x+U(y)
) ind

=
(
L(y) +x)∪y+L(x)

∣∣U(y) +x∪y+U(x)
)

= y+x

Identity : the identity element is 0, its standard representation is (∅; ∅) and one easily sees by induction
that

x+ 0 =
(
L(x) + 0

∣∣U(x) + 0
)

=
(
L(x)

∣∣U(x)
)

= x

Inverse: define −x as the only surreal number such that le(−x) = le(x) and for every i ∈ le(x) one
has x(i) 6= (−x)(i), that is the sequence obtained exchanging 0 with 1. We prove by induction on le(x)
that x+ (−x) = 0: notice first that

L(−x) = −U(x) U(−x) = −L(x)
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It follows by inductive hypothesis that for every −x′′ ∈ L(−x) one has −x′′ + x < −x′′ + x′′ = 0 so
that L(−x) + x < 0. Similarly one obtains U(−x) + x > 0, (−x) + L(x) < 0 (−x) + U(x) > 0, hence
−x+ x = 0.
Finally notice that we already saw compatibility of the order with + (Proposition 2.20, SumOrd).

Corollary 2.23. Noλ are closed under addition if and only if λ = ωα for some α ∈ On.

Proof. This follows from the estimate on the length of the sum le(a + b) ≤ le(a)⊕ le(b) and that this
estimation is optimal for every couple (le(a), le(b)).

2.2.2 Product: an ordered ring structure
One can define a notion of product on No compatible with < and + in the obvious sense of defining
a totally ordered ring structure on No. The definition of product again is by transfinite induction
on le(x) ⊕ le(y): the recursive definition formula is made so to force that for every x′ ∈ L(x), x′′ ∈
U(x), y′ ∈ L(y), y′′ ∈ L(y), one has the relations

(x′ − x)(y′ − y) > 0 (x′ − x)(y′ − y) > 0 (x′′ − x)(y′ − y) < 0 (x′ − x)(y′′ − y) < 0

Proposition 2.24. There is one and only one class function _ · _ : No ×No → No satisfying the
recursive relation

x · y =

(
px,y

(
L(x)× L(y)

)
∪ px,y

(
U(x)× U(y)

)∣∣∣∣px,y(L(x)× U(y)
)
∪ px,y

(
U(x)× L(y)

))
(ProdInd)

where px,y(x̃, ỹ) = x · ỹ + y · x̃− ỹ · x̃. Moreover the following hold

∀x, y, z, t ∈ No,

{
x < y

z < t

}
→ xt− xz < yt− yz (ProdOrd)

Proof. It suffices to show by simultaneous induction on α ∈ On two statements three statements P1α,
P2α.

∀x, y ∈ No, le(x)⊕ le(y) ≤ α→

→ px,y
(
L(x)× L(y)

)
∪ px,y

(
U(x)× U(y)

)
< px,y

(
L(x)× U(y)

)
∪ px,y

(
U(x)× L(y)

)
(P1α)

that is to say x · y is well defined for every x, y such that le(x)⊕ le(y) ≤ α. Again for every x′ ∈ L(x),
y′ ∈ L(y), x′′ ∈ U(x), y′′ ∈ U(y) one has that le(x)+le(y′), le(x′)+le(y), le(x)+le(y′′) and le(x′′)+le(y)
all are ordinals < α so that the sets appearing in the definition of x · y are already defined assuming
P1γ for every γ < α.

∀x, y, z, t ∈ No,

{
le(a)⊕ le(b) :

a ∈ {x, y}
b ∈ {z, t}

}
≤ α &

{
x < y

z < t

}
→ xt− xz < yt− yz (P2α)

Assuming P1γ , P2γ true for every γ < α:

P1α Notice that by P2<α, given x′0, x′1 ∈ L(x), y′ ∈ L(y), y′′ ∈ U(y), denoting by x′ = max{x′0, x′1}
we get

px,y(x′1, y
′′)− px,y(x′0, y

′) ≥ px,y(x′, y′′)− px,y(x′, y′′) = xy′ − x′y′ − xy′′ + x′y′′ > 0

where the first inequality followos from the fact that by P2<α one has px,y(−, b) is increasing
(where it is defined) if b < y and decreasing if b > y. The other inequalities are obtained in a
similar way.

P2α first assume that the couples x, y and z, t are both related by simplicity. E.g. assume x ≤s y and
z ≤s t, then x ∈ L(y) and z ∈ L(t), then by definition yt > xt + yz − xz, the other cases are
similar. Now assume that z, t are related by simplicity but x, y are not: we have

x < x
s
∧ y < y ⇒ xt− xz < (x

s
∧ y)t− (x

s
∧ y)z < yt− yz

The hypothesis on z, t is removed in a similar way:

z < z
s
∧ t < t⇒ xz − yz < x(t

s
∧ z)− y(t

s
∧ z) < xt− yt
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Proposition 2.25. The above defined operation · enjoys the following properties

i) Uniformity of the representation: given any two representations x = (A|B), y = (C|D) one has

x · y =

(
px,y

(
A× C

)
∪ px,y

(
B ×D

)∣∣∣∣px,y(A×D) ∪ px,y(B × C))
ii) (No,+, <, ·, 1, 0) where 1 = {1}1 is a totally ordered integral domain.

Proof. i. By Proposition 2.19 one has A and C are cofinal in L(x) and L(y) respectivly and B,D
are coinitial in U(x) and U(y) respectively, moreover px,y|(∅;x)×(∅;y) and px,y|(x;∅)×(y;∅) are increasing
in both arguments, hence px,y(A × C) is cofinal in px,y(L(x) × L(y)) and px,y(B × D) is cofinal in
px,y(U(x) × U(y)). The coinitiality statement of the right hand parts of the representations follow
similarly using the fact that px,y|(∅;x)×(y;∅) and px,y|(x;∅)×(∅;y) are respectively decreasing in the first
argument increasing in the second and increasing in the first argument decreasing in the second.
ii. Commutativity : as for addition we can use an inductive argument noticing that assuming commuta-
tivity true for couples with sum of the lengths strictly less then le(x)⊕le(y) we get py,x(ỹ, x̃) = px,y(x̃, ỹ).
Distributivity : it suffices to prove distributivity on the left i.e. x(y + z) = xy + xz. We use induction
on le(x)⊕ le(y)⊕ le(z). Direct computation shows that 0 · (0 + 0) = 0 · 0 = 0 = 0 · 0 + 0 · 0. As for the
inductive step we can compute x(y + z) using the representations

x = (L(x)|U(x)) y + z =
(
L(y) + z ∪ y + L(z)

∣∣L(y) + z ∪ y + L(z)
)

The typical term of the resulting representation of x(y + z) via i. is of one of the two forms

px,y+z(x̃, ỹ + z) = x̃(y + z) + x(ỹ + z)− x̃(ỹ + z)
ind
= xz + x̃y + xỹ − x̃ỹ

px,y+z(x̃, y + z̃) = x̃(y + z) + x(y + z̃)− x̃(y + z̃)
ind
= xy + x̃z + xz̃ − x̃z̃

for x̃ <s x, ỹ <s y and z̃ <s z,. We used inductive hypothesis on the second equality (ind
= ) of each line

and a term and is lower if the −̃ elements in the right end expression are both lower or upper and
upper otherwise. On the other hand computing xy + xz we get typical terms

px,y(x̃, ỹ) + xz = xz + x̃y + xỹ − x̃ỹ xy + px,z(x̃, z̃) = xy + x̃z + xz̃ − x̃z̃

with the same rule for deciding whether they are lower or upper, hence the representation coincides
with the one above.
Associativity : again the proof goes by induction on le(x) ⊕ le(y) ⊕ le(z). Again using i. we can get a
representation of (xy)z with typical terms

pxy,z
(
px,y(x̃, ỹ), z̃

)
= (xy)z̃ + (xỹ + x̃y − x̃ỹ)(z − z̃) x̃ <s x, ỹ <s y, z̃ <s z

again a term beeing lower if the number of •̃ elements that are lower is odd; and one of x(yz) with
typical terms,

px,yz
(
x̃, py,z(ỹ, z̃)

)
= x̃(yz) + (x− x̃)(yz̃ + z̃y − ỹz̃) x̃ <s x, ỹ <s y, z̃ <s z

with the same rule for deciding whether they are upper or lower. By direct computation using inductive
hypothesis one sees they coincide.
Identity : we want to prove {1}1 = 1 ∈ No is the identity element. We proceed by induction: the
standard representation of 1 is 1 = ({0}|∅), and we see that

p1,x(0, x̃) = 1 · x̃+ 0 · x− 0 · x̃ = 1 · x̃

where in the second equality we used the fact that 0 · y = 0 for every surreal y, which follows from the
distributive law. The inductive step easily follows.
Order compatibility : this means that

∀x, y ∈ No, x > 0 & y > 0→ xy > 0

and follows from Proposition 2.24, ProdOrd. We notice that this strong form of compatibility also
implies No is an integral domain.
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2.2.3 Existence of multiplicative inverse
In this subsection we prove the existence of a multiplicative inverse of nonzero surreal numbers. The
proof is again by transfinite induction, though it require a quite more subtle and involved construction
then the previous we saw. The proof is quite the same as in Gonshor [6].We remark that this is actually
superfluous, since as we will see No will turn out to have a “Hahn field” structure over R.

Construction 2.26. Let x ∈ No \ {0} and assume there is 1/y ∈ No for every y <s x, we can define

fx : No× S(x)→ No fx(t, y) = t+
1− xt
y

Let S(x)∗ = {y : y ∈ (S(x) \ {0})n, n ∈ N} denote the set of finite sequences in S(x) \ {0}. We define
inductively a function Fx : S(x)∗ → No as

Fx() = 0 Fx(y0, . . . , yn−1, yn) = fx
(
Fx(y0, . . . , yn−1), yn

)
Now define the sets

I(x) = {Fx(y) : y ∈ S(x)∗, xFx(y) < 1}

J (x) = {Fx(y) : y ∈ S(x)∗, xFx(y) > 1}

Depending on the sign of x one has I(x) < J (x) or J (x) < I(x), in any case if properly arranged the
couple forms a representation.

Such a representation will be a representation of 1/x. In the proof we will make use of a Lemma

Lemma 2.27. With the notations and assumptions of Construction 2.26 we have

I(x) =
{
Fx(y) : y ∈ S(x)∗, |{i ∈ le(y) : yi < x}| ∈ 2N

}
J (x) =

{
Fx(y) : y ∈ S(x)∗, |{i ∈ le(y) : yi < x}| ∈ 2N + 1

}
that is to say for any y = (y0, . . . , yn−1) ∈ S(x)∗, xF (y) > 1 if and only if the number of i < n such
that yi < x is even.

Proof. Notice that fx satisfies

xfx(t, y) = 1 + (x− y)(fx(t, y)− t) xt < 1⇔ t < fx(t, y)

hence t 7→ fx(t, y) maintains the property of being in I(x) or J (x) if y > x and reverts it if y > x.
The statement then follows by induction noticing that xF () = 0 < 1.

Proposition 2.28. With the notations and assumptions Construction 2.26 x has multiplicative inverse
given by (I(x)|J (x)) if x > 0 and (I(x)|J (x)) if x < 0.

Proof. It suffices to verify that for x > 0 one has x · (I(x)|J (x)) = 1. For notational commodity let
(I(x)|J (x)) = w. Using Proposition 2.25.i we get a representation of xw with typical term given by

px,w
(
x̃, Fx(y)

)
= xFx(y) + x̃w − x̃Fx(y) x̃ ∈ S(x), y ∈ S(x)∗

and it is lower if x̃ < x and xFx(y) < 1 or x̃ > x and xFx(y) > 1, upper otherwise.
We immediately see that taking x̃ = 0, and y the empty sequence we get px,w(0, 0) = 0 hence 0 < xw.
Now it suffices to notice that px,w

(
x̃, Fx(y)

)
< 1 if it is lower and > 1 if it is upper.

If x̃ = 0 then we have px,w
(
0, Fx(y)

)
= xFx(y) and we easily see that the term is lower if and only if

xFx(y) < 1.
If instead x̃ ∈ S(x) \ {0} then Fx(y, x̃) is defined, also, since we assumed x > 0, x̃ > 0. We have that
the term px,w

(
x̃, Fx(y)

)
is lower, that is x̃ < x and xFx(y) < 1 or x̃ > x and xFx(y) > 1, if and only if

(by Lemma 2.27) one has xFx(y, x̃) > 1. This in turn is equivalent, by definition of w, to

w < Fx(y, x̃) = Fx(y) +
1− xFx(y)

x̃

and this agian is equivalent to px,w
(
x̃, Fx(y)

)
= (x− x̃)Fx(y) + wx̃ < 1.

Theorem 2.29. (No,+, 0, ·, 1, <) is a totally ordered field.

Proof. By Proposition 2.25.ii the only thing left to prove is that any x ∈ No \ {0} has a multiplicative
inverse: this follows by induction on le(x) using Proposition 2.28
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2.3 Remarkable Subrings of No

A way of getting subrings or subfields of No is to consider Noλ for some suitable ordinal λ. We already
saw that Noλ is closed under addition if and only if λ = ωα for some α ∈ On. Some more difficult
estimates on the length of the product of two surreal numbers and of the inverse can be found in [8]:
there the following is proven

Proposition 2.30. Let λ ∈ On, then

i Noλ is an additive subroup of No if and only if λ = ωα for some α ∈ On;

ii Noλ is closed under product if and only if λ = ωω
α

for some α ∈ On, in such a case it is a
subring of No

iii Noλ is a subfield of No if and only if ωλ = λ, that is λ is a ε-ordinal.

Hence the smallest non null subring of this form, is Noω. It turns out that Noω is the ring of
dyadic fractions

Noω =
{m

2k
: m ∈ Z, k ∈ N

}
as was already shown in [5], [6].

Lemma 2.31. If x, y ∈ No are such that ({2x}|{2y}) = x+ y, then ({x}|{y}) =
x+ y

2
.

Proof. Let c = {a}|{b}, then 2a < a + c < a + b < c + b < 2b. Now by definition 2c = c + c =
{a+ c}|{b+ c}, hence by Fact 2.16.i one has 2c = a+ b.

Proposition 2.32. If x = {1}m_0_y with le(y) = n < ω one has

x = m− 1

2
+

n−1∑
k=0

2y(k)− 1

2n+2

Proof. We proceed by induction on n. If n = 0 we have {m− 1}|{m} = m− 1

2
by Lemma ??.

Now let x̃ = m− 1

2
+

2k + 1

2n+2
with 0 ≤ k < 2n, and x = x′_1. By inductive hypothesis and a

cardinality argument{
m+

1

2
+

c

2n+2
: 0 ≤ c < 2n+1 − 1

}
=

{
{1}m_0_y : y ∈ Non+1

}

in such a set there has to be x′′ = m− 1

2
+

2k + 2

2n+2
= x′ +

1

2n+2
which therefore is the minimum upper

initial segment of x. It follows that

x = ({x′}|{x′′}) =

({ c

2n+2

} ∣∣{c+ 1

2n+2

})
=

2c+ 1

2n+3
c = m2n+2 + 2n+1 + 2k + 1

a similar arguments can be carried out for x = x′′_0, in suh a case one starts with x′′ which is
the minimum upper initial segment of x and sees that the maximum lower initial segment is x′ =
x′′ − 2−n−2.

Corollary 2.33. The ring Noω is the ring of dyadic fractions, Noω = Z2−N.

Along this line one can prove that R is a subfield of No contained in Noω+1: precisely it consist of
all finite length surreals and of ω-long surreals represented by a non eventually constant sequence, i.e.
those not of the form x_{1}ω or x_{0}ω for x ∈ Noω. For detailed proof and treatment we refer to
[6], Chapter 4, Section C, pp.32-41.

Remark 2.34. Another way around this could be to use the theory of cuts in abelian groups as defined
in [10]. We will be loose in reporting this: first because this far from the focus of our work and second,
most importantly, for lack of time.
Given a total order (X,<) a quite natural definition of cut is the following4 : a cut Λ is a couple (ΛL,ΛR)

4 note that this is not the same as a Dedekind-MacNaille cut we wrote about in Remark 2.11.
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of subsets of X, such that ΛL < ΛR and ΛL ∪ ΛR = X. It happens then that one has two different
versions of a principal cut: if x ∈ X we have x+ =

(
(−∞, x), [x,∞)

)
and x− =

(
−∞, x], (x,∞)

)
. The

set of such cuts is then denoted as X̌, and has a total order given by Λ1 < Λ2 ⇔ ΛL1 ⊆ ΛL2 .
If one then considers the disjoint union X t X̌ and extends the orders setting

x < Λ⇔ x ∈ ΛL Λ < x⇔ x ∈ ΛR

one gets a totally ordered set X̃. An interesting fact is that if X = Noα, then there is an order
isomorphism X̃

∼−→ Noα+1 extending the identity on X, defined as follows:

• every x ∈ Noα = X ⊆ X̃ is sent into itself

• if Λ is a principal cut i.e. if Λ = x− or Λ = x+, then one sends respectively x− in x_011 · · · , and
x+ in x_100 · · · .

• if instead Λ is not principal then ΛL and ΛR have respectively no maximum and minimum in
X = Noα, in such a case α has to be limit and one can show that there is one and only one
element of length exactly α separating the two sets: we set the image of Λ to be this element.

Now restricting the attention to the case in which α = λ = ωβ is an additive ordinal we have X = Noλ
is an ordered abelian group, the above defined X̌ and X̃ happen not to inherit a well defined ordered
abelian group structure, they however retain a more complicated structure studied and defined in [10],
namely that of a doubly ordered monoid (d.o.m.): it would be interesting to study in more detail the
relation of the structure of d.o.m. of X̃ = Noλ+1 and the structure it inherits from surreal numbers.

2.4 Archimedean classes and Conway’s ω function
Let (A,+, 0, <) be a linearly ordered abelian group, one defines the absolute value of an element x to
be |x| = max{x,−x}. On A one can define the reflexive, weakly antisymmetric relation

x � y ⇔ ∃n ∈ N, |x| ≤ n · |y| ⇔ x ∈ (Z · y) ↓

This induces the equivalence relation

x � y ⇔ x � y & y � x

the equivalence classes of such a relation are called Archimedean classes of the group: note that the
intersection of an archimedean class with the positive cone {x ∈ A : x > 0} is convex.

Definition 2.35. We call a surreal number x a monomial if it is the simplest positive representative
of its archimedean class. We will use fracture letters m to denote monomials. The class of monomials
will be denoted by M: it inherits the natural order of No ⊇M.

It happens that M is closed under product and parametrized by No.

Proposition 2.36. There is one and only one function ω− : No→M satisfying the recursive relation

ωx =
(
{0} ∪ {nωx

′
: n ∈ N, x′ ∈ L(x)}

∣∣{2−kωx′′ : k ∈ N, x′′ ∈ U(x)}
)

(ωRec)

moreover x < y ⇒ ωx ≺ ωy.

Proof. By induction on le(x) = α: we prove that if the operation si well defined up to Noα and that
for every x, y ∈ Noα one has

x < y ⇒ ωx ≺ ωy (*)

the the operation is defined up to Noα+1 and (∗) holds up to Noα+1.
The fact that for every x with le(x) = α, ωx is well defined as an element of No follows easily from (∗)
on Noα. As for ωx ∈M, notice that if y � ωx, then

|y| ∈
(
{0} ∪ {nωx

′
: n ∈ N, x′ ∈ L(x)}; {2−kωx

′′
: k ∈ N, x′′ ∈ U(x)}

)
hence ωx ≤s y.
Finally from the defintion of x we have that if say x < y, then x < x

s
∧ y ≤ y and we get that from the

inductive definition of x it follows that

ωx ≺ ωx
s
∧ y � y

This concludes the induction argument.
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Definition 2.37. The above defined function ω− is called Conway’s ω function or just ω-function.

Proposition 2.38. The ω function has the following properties

i Uniformity of the representation: given any representation x = (A|B) one has

ωx =
(
{0} ∪ {nωx

′
: n ∈ N, x′ ∈ A}

∣∣{2−kωx′′ : k ∈ N, x′′ ∈ B}
)

ii ω− : No→M is an order isomorphism, in paritcular it is surjective: that is for every monomial
m there is x ∈ No such that ωx = m.

iii ω0 = 1 and ωx+y = ωxωy for every x, y ∈ No.

iv ω− restricted to ordinals is the same as ordinal exponentiation with base ω.

Proof. i. Since ω− is increasing and (A,B) is cofinal in (L(x),L(y)) we get the desird cofinality result.
ii. We immediately notice that since ω− is strictly increasing it is injective, hence the only nontrivial
fact is surjectivity. We prove by induction on le(y) that for every y ∈ No \ {0}, there is a x ∈ No s.t.
ωx � y.
If le(y) = 1, then |y| = 1 and we see from the definition that ω0 = ({0}|∅) = 1.
Now assume the result holds for every number in Noα and let le(y) = α, then by inductive hypothesis
for every ỹ ∈ S(y) there is a (unique) element x̃ = f(ỹ) ∈ No such that ωf(ỹ) � ỹ: we easily see that
y0 < y1 ⇒ f(y0) ≤ f(y1), for otherwise the fact that ω is increasing would be contraddicted. We thus
have f(L(y)) ≤ f(U(y)), now we distinguish two cases:

• if there is x ∈ f(L(y)) ∩ f(U(y)) 6= ∅, then we have f(L(y)) ≤ x ≤ f(U(y)): it follows that such
a x is unique and L(y) � ωf(L(y)) ≤ ωz ≤ ωf(U(y)) � U(y), hence y � ωx.

• if f(L(y)) ∩ f(U(y)) = ∅, then f(L(y)) < f(U(y)), also ωf(L(y)) is cofinal in L(y), as in this
case the set of archimeden classes intersected by L(y) has no maximum, analogously ωf(U(y)) is
coinitial in U(y). So if we define x =

(
f(L(y))

∣∣f(U(y))
)
we get by confinality and py point i.

y =
(
ωf(L(y))

∣∣ωf(U(y))
)

= ωx

iii. We already saw that ω0 = 1, let us prove ωx+y = ωxωy by induction on le(x) ⊕ le(y). If either
x or y are 0, then we know the result true because ω0 = 1. If none of them is 0, then we can write
representations of ωx and ωy as

ωx =
(
NωL(x)

∣∣2−NωU(y)
)

ωy =
(
NωL(y)

∣∣2−NωU(y)
)

Thus we get a presentation of ωxωy with lower terms of one of the two forms

nωxωy
′
+mωx

′
ωy − nmωx

′
ωy
′ Ind

= nωx+y′ +mωx
′+y − nmωx

′+y′ (La)

2−nωxωy
′′

+ 2−mωx
′′
ωy − 2−n−mωx

′′
ωy
′′ Ind

= 2−nωx+y′′ + 2−mωx
′′+y − 2−n−mωx

′′+y′′ (Lb)

and upper terms of one of the two forms

nωxωy
′
+ 2−mωx

′′
ωy − n2−mωx

′′
ωy
′ Ind

= nωx+y′ + 2−mωx
′′+y − n2−mωx

′′+y′ (Ua)

2−nωxωy
′′

+mωx
′
ωy − 2−nmωx

′
ωy
′′ Ind

= 2−nωx+y′′ +mωx
′+y − 2−nmωx

′+y′′ (Ub)

where x′ ∈ L(x), x′′ ∈ U(x), y′ ∈ L(x), y′′ ∈ U(x), n,m ∈ N, and we have used inductive hypothesis to
write them in the form on the rightside of Ind

= .
We notice that the terms of the form (Lb) are all negative and we can suppress them from the presen-
tation: this is because

ωx
′′+y′′ � 2−nωx+y′′ + 2−mωx

′′+y

A representation of ωx+y is instead

ωx+y =
(
Nωx+L(y) ∪ NωL(x)+y

∣∣2−Nωx+U(y) ∪ 2−NωU(x)+y
)

Notice that the sets defining this representation are included in the above: in particular all elements
of Nωx+L(y) ∪ NωL(x)+y are of the form (La), all elements of 2−Nωx+U(y) are of the form (Ub) and all
elements of 2−NωU(x)+y are of the form (Ua). Hence to conclude, it suffices to work out the following
cofinality results:
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• Nωx+L(y) ∪ NωL(x)+y is cofinal in the set of terms of the form (La) for

nωx+y′ +mωx
′+y − nmωx

′+y′ ≤ 2 max{n,m}max{ωx
′+y, ωx+y′} ∈ Nωx+L(y) ∪ NωL(x)+y

• 2−NωU(x)+y is cofinal in the set terms of the form (Ua): notice that ωx
′′+y � nωx+y′−n2−mωx

′′+y′ ,
hence

nωx+y′ + 2−mωx
′′+y − n2−mωx

′′+y′ ≥ 2−m−1ωx
′′+y ∈ 2−NωU(x)+y

• analogously 2−Nωx+U(y) is cofinal in the set of terms of the form (Ub).

iv. This follows by induction using the inductive definition and the fact that if α is an ordinal, then
the standard representation of {1}α is α =

({
{1}γ : γ < α

}∣∣∅).
2.5 Normal Form: a Hahn field structure
No has a natural structure of Hahn field over its set of archimedean classes M = ωNo. We devote this
section to present the structure

2.5.1 Normal form
The rest of this section will be devoted to build an isomorphism∑

: R((M))
∼−→ No

throughout the subsection, until otherwise, stated
∑

will deonte such an isomorphism.
Its inverse is usually referred to as normal form: more specifically given a x ∈ No the only f ∈ R((M))
such that

∑
f = x is called normal form of x.

Proposition 2.39. There is one and only one function
∑

: R((M)) = R((ωNo))
∼−→ No satisfying the

following inductive relations on the well order type of (S(f), >)∑
f =

({∑
f |m + qm : m ∈ S(f), q ∈ R, q < fm

)} ∣∣∣∣ {∑ f |m + qm : m ∈ S(f), q ∈ R, q > fm

})
moreover it is strictly increasing and the following properties hold:

i Tail property: for every m ∈M one has∑
f =

∑
f |m +

∑
(f − f |m)

∣∣∣∑ f −
∑

f |m
∣∣∣ � m

ii If S(f) has a minimal element m, then
∑

f =
∑

f |m + fmm

Proof. We prove that if
∑

is defined, strictly increasing and satisfies the tail property on the set of
g ∈ R((M)) with (S(g), >) ' (α,<) for some ordinal α < β, then

∑
is defined also for all f such that

(S(f), >) ' (β,<) so that it stays strictly increasing and still satisfies the tail property.
The good definition follows trivially from the fact that∑

f |m + qm <
∑

f |n + rn

for every m, n ∈ S(f), q ∈ L(fm) and r ∈ U(fn) by the inductive hypothesis: one easily sees that
f |m + qm < f < f |m + rm.
Tail property : it suffices to prove the first equality, as the inequality then follows from the fact that
|f | � max S(f). Notice that S(f − f |m) = S(f) ∩ (−∞,m] has order type ≤ β, hence it is defined as
f − f |m = (A,B) where

A =
{∑

(f |n− f |m) + qn : n < m, q ∈ R, q < fn

}
B =

{∑
(f |n− f |m) + qn : n < m, q ∈ R, q < fn

}
One has then that ∑

f |m +A <
∑

f |m +
∑

(f − f |m) <
∑

f |m +B
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moreover
∑

f |m +A and
∑

f |m +B are cofinal and coinitial respectively in

A′ =
{∑

f |o + qo +
∑

(f − f |m) : o > m, q ∈ R, q < fo

}
B′ =

{∑
f |o + qo +

∑
(f − f |m) : o > m, q ∈ R, q > fo

}
becasue, stright by the inductive definiton

∣∣∣∑(f − f |m)
∣∣∣ � max{S(f) ∩ (−∞,m]} � m, so it follows

that
∣∣∣∑(f − f |m)

∣∣∣ ≺ o for every o > m.
Now from the uniformity of the definition of sum (Proposition 2.22.i) and from Fact 2.16 we deduce
that ∑

f |m +
∑

(f − f |m) =

(∑
f |m +A

∣∣∣∣∑ f |m +B

)
(∗)

The typical terms of such a representation can be rewritten by inductive hypothesis as∑
f |m +

∑
(f |n− f |m) + qn

Ind
=
∑

f |n + qn

This implies that the representation (∗) is the same of the one defining
∑

f .
Increasingness: let g < f be such that (S(g), >) ' (α,<) with α ≤ β and {mγ}γ<β and {nγ}γ<β be
two decreasing sequences of monomials, s.t.

S(f) = {mγ : γ < β} S(g) = {nγ : γ < α}

Set δ = min{γ : f |mγ 6= g|nγ} so that one has

f |mδ+1 − g|nδ+1 = fmδmδ − gnδnδ ≥ rmax{mδ, nδ}

for some r ∈ R, r > 0. It then follows from the tail property that∣∣∣∑ f −
∑

f |mδ+1

∣∣∣ ≺ mδ

∣∣∣∑ g −
∑

g|mδ+1

∣∣∣ ≺ nδ

hence f − g ≥ r′max{mδ, nδ} for any 0 < r′ < r. This concludes the induction argument.
Finally notice that ii follows from the tail property (i) truncating at the minimal monomial in the
support.

Remark 2.40. From the definition of
∑

it follows that
∑

f |m ≤s

∑
f : this is because the elements

in the defining representation of
∑
f |m are also in the defining representation for

∑
f .

Before preceding with the proof of surjectivity and other properties, we remark the following about
R((M)): its elements can be seen (i.e. are in natural bijection) with the set of couples of sequences
(rγ)γ<α, (mγ)γ<α from some α ∈ On and such that (mγ)γ∈α is strictly decreasing and rγ 6= 0.
With this in mind, extending the notion to the case in which rγ does not need to be actually always
null we can apply

∑
also to such sequences writing∑

γ<α

rγmγ =
∑

f

where f ∈ R((M)) is the element with support S(f) = {mγ : γ < α, rγ 6= 0} and f(mγ) = rγ .

Proposition 2.41.
∑

: R((ω))→ No is bijective.

Proof. Injectivity is trivial, because we saw
∑

is strictly increasing. In order to show surjectivity let
us first define two auxiliary functions lm : No→M t {0}, and lc : No→ R defined by

|x| � lm(x) |x− lc(x)| ≺ lm(x)

For x ∈ No let us define a transfinite sequence xγ of nonzero surreal numbers such that the sequence
mγ = lm(xγ)γ<α is strictly decreasing as follows:

• if x = 0 the sequence is empty, otherwise x0 = x
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• assuming we have a sequence (xγ)γ<α such that (mγ)γ<α is strictly decreasing we set rγ = lc(xγ)
and

xα = x−
∑
γ<α

rγmγ

if it is nonzero, let the sequence terminte otherwise. In case xα was defined we need to see that(
mγ = lm(xγ)

)
γ<α+1

still is strictly decreasing: let β < α the by Proposition ??.i we get

|xβ − xα| =

∣∣∣∣∣∣
∑
γ<α

rγmγ −
∑
γ<β

rγmγ

∣∣∣∣∣∣ � mβ ≺ mα

By construction thus the sequence terminates at stage α if and only if x =
∑
γ<α

rγmγ .

Hence surjectivity follows if we can prove that every such sequence eventually terminates.
In order to do this we show that if xγ was defined for every γ ∈ On then x = x0 would have length
le(x) ≥ α for every α ∈ On.
First notice that form Remark 2.40 one has le(

∑
γ<α rγmγ) ≥ α. Now we see that letting

∑
γ<α rγmγ =

(A|B) be the defining representation of
∑
γ<α rγmγ we immediately see A ≺ x ≺ B, in particular

A < x < B, so
∑
γ<α rγmγ ≤s x. Now this would imply le(x) ≥ α, since α was arbitrary we have a

contraddiction.

Proposition 2.42.
∑

has moreover the following properties

i Uniformity: for every f ∈ R((m)) and every A ⊇ S(f) one has∑
f =

({∑
f |m + rm : m ∈ A, r ∈ R, r < fm

} ∣∣∣∣ {∑ f |m + rm : m ∈ A, r ∈ R, r > fm

})

ii Additivity: for evvery f, g ∈ R((m)) one has
∑

f +
∑

g =
∑

(f + g)

iii Ring homomorphism: for evvery f, g ∈ R((m)) one has
∑

(fg) =
(∑

f
)(∑

g
)

Proof. i. Uniformity : First notice that for every m ∈ M and every r′, r′′ ∈ R with r′ < fm < r′′ one
has ∑

f |m + r′m <
∑

f <
∑

f |m + r′′m

essentially because of the definition of order on R((M)) and the fact that
∑

is an order isomorphism.
Now notice that if A ⊇ S(f) then the sets of in the repesentation above are cofinal in the defining
representation of

∑
f .

ii. Additivity : Procede by induction on the natural sum of the order types of S(f) and S(g). Computing
a representation of

∑
f +

∑
g via the definition we get a representation with typical terms of one of

the two forms∑
f |m + qm +

∑
g

∑
f +

∑
g|n + pn m ∈ S(f), n ∈ S(g), q ∈ R \ {fm}, p ∈ R \ {fn}

We see that this is mutually cofinal with the presentation of
∑

(f+g) deduced from point i with typical
terms of the form∑

(f + g)|m + rm =
∑

f |m +
∑

g|m + qm m ∈ S(f) ∪ S(g), q ∈ R \ {fm + gm}

where the equality follows by the inductive hypothesis.
iii. We precede by induction on the order type of S(f)S(g): typical terms of the product (

∑
f) (
∑
g)

are by definition∑
f
∑

g̃ +
∑

f̃
∑

g −
∑

f̃
∑

g̃ f̃ = f |m + qm, g̃ = g|n + pn

These can by inductive hypothesis be written as∑
(fg̃ + f̃g − f̃ g̃) =

∑(
fg − (f − f̃)(g − g̃)

)
=
∑

fg −
∑

(f − f̃)(g − g̃)

Now since S(f − f |m− fmm) < m and S(g − g|n− gnn) < n{
f − f̃ = (f − f |m− fmm) + (fm − q)m
g − g̃ = (g − g|n− gnn) + (gn − p)n

⇒ (f − f̃)(g − g̃) = (fm − q)(gn − p)mn + h
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where S(h) < mn hence |h| ≺ mn.
Since |(fm − q)(gn − p)| can be an arbitratry small real number, by mutual cofinality we get a repre-
sentation of (

∑
f) (
∑
g)({∑

fg + rmn : r ∈ R, r < 0,mn ∈ S(f)S(g)
} ∣∣∣∣ {∑ fg + rmn : r ∈ R, r < 0,mn ∈ S(f)S(g)

})
this is also a representation

∑
fg by (i) and the fact that S(f)S(g) ⊇ S(fg).

For future reference we summarize the above result in the following

Theorem 2.43. The function
∑

: R((M))→ No is an ordered field isomorphism.

Remark 2.44. This allow us to define a notion of truncation and of summable family on Surreal
numbers. The notation for the summation of a summable family is then consistent with the notation
for
∑

in particular ∑
f =

∑
m∈S(f)

fmm

where the right hand side denotes the notion of summation inherited by the Hahn field structure.

2.6 Kruskal-Gonshor exponentiation
Recall that an exponential field is a field (K,+, ·, 0, 1) endowed with an exponetnial function E : K → K
such that

E(x+ y) = E(x)E(y) E(0) = 1

that is, a group homomorphism E : (K,+, 0)→ (K\{0}, ·, 1). In 1986 Gonshor, following some ideas of
Kruskal defined a nontrivial exponentiation exp : No→ No extending the natural base exponentiation
on real numbers and satisfying two other reasonable assumptions.

When discussing the topic a natural class of surreal numbers arises, so we introduce them here

Definition 2.45. A surreal number x ∈ No is said to be purely infinite if it is urely infinite w.r.t.
to the Hahn Fileld structure No = R((M)), that is, if it has only infinite monomials in its support,
S(x) � 1.
The class of purely infinite surreal numbers is usually denoted by J.

Remark 2.46. As a consequence of the definition and Theorem ??, we have that every surreal number
x decomposes uniquely as a sum x = j + r + ε, with ε ∈ o(1) infinitesimal, r ∈ R and j ∈ J.

No = o(1) + R + J

The above Remark implies that the definition of an exponential function can be split into the
definition of exp |o(1), exp |R, exp |J, since

ε ∈ o(1), r ∈ R, j ∈ J⇒ exp(j + r + ε) = exp(j) exp(r) exp(ε)

Now one would like exp to be an analytic exponential in the sense of [?] that is, we recall:

• exp(r) has to be the real natural exponential;

• for infinitesimal x it is the infinite sum corresponding to the series expansion of the exponential
function

|x| ≺ 1⇒
∑
n∈N

xn

n!

• exp(J) = M, that is, it sends purely infinite numbers surjectively into monomials; it follows
that the restriction exp |J→M : J → M, can be composed with Ω−1 yielding an additive map
G = Ω−1 ◦ exp | : J→ No, it is natural then to require it to preserve infinite sums, it is actually
reasonable to require it to be

G = idR((g̃)) : J = R((M>1))→ R((M)) = No

for some chain isomorphism g̃ : M>1 →M.

52



First two technical lemmas

Lemma 2.47. For x ∈ No let [x]n =

n∑
k=0

xk

k!
, the following hold

i if x > 0 then {[x]n : n ∈ N} is strictly increasing

ii if x < 0, and let n0 =

⌈
−x− 1

2

⌉
with the convention that n0 =∞ if |x| � 1, then

a {[x]2n+1 : n ≤ n0} is decreasing and ≤ 0

b {[x]2n+1 : n ≥ n0} is strictly increasing and eventually positive; it is empty if |x| � 1.

Proof. i. This is clear since it is a sequence of partial summation of a positive term series.
ii. Notice that

[x]2n+3 − [x]2n+1 =

(
x+ 2n+ 3

(2n+ 3)!

)
x2n+2

hence the sequence [x]2n+1 is decreasing when restricted to n ≤ n0 and strictly increasing for n ≥ n0.
Finally we see that [x]1 is positive if and only if x > −1, and in such a case, since we are assuming x
negative n0 = 1.

Lemma 2.48. The following hold

i if x, y > 0 then [x+ y]n ≤ [x]n[y]n ≤ [x+ y]2n;

ii for every x, y ∈ No finite, i.e. s.t. both |x|, |y| are � 1 one has

∀m ∈ N, ∃n ∈ N, ∀p ∈ N, p ≥ n→ [x+ y]2m+1 < [x]2p+1[y]2p+1

iii for every x ∈ No with |x| � 1 one has

∃m ∈ N, ∀p > m, [x]p[−x]p < 1

Proof. i. It suffices to notice that

[x+ y]2n − [x]n[y]n = xn
n∑
k=1

xk

(n+ k)!

n−k∑
j=0

yj

j!
+ yn

n∑
k=1

yk

(n+ k)!

n−k∑
j=0

xj

j!

[x]n[y]n − [x+ y]n =

2n∑
k=n+1

k∑
j=k−n

xjyk−j

j!(k − j)!

ii. First deal with the case in which both |x|, |y| � 1, hence x = r + δ, y = s+ ε, in such a case∣∣[x]2n+1 − [r]2n+1

∣∣ ≺ 1
∣∣[y]2n+1 − [s]2n+1

∣∣ ≺ 1

then we know the fact is true for r, s ∈ R and conclude.
iii. use the same trick as ii.

Proposition 2.49. There is one and only one class function exp : No→ No satisfying the recursive
equation

exp(x) =

{
0, exp(x′)[x− x′]n, exp(x′′)[x− x′′]2n+1

}∣∣∣∣{ exp(x′′)

[x′′ − x]n
,

exp(x′)

[x′ − x]2n+1

}
(Exp.Rec)

where [h]n =

n∑
k=0

xk

k!
and x′ is intended to range in L(x), x′′ in U(x), and terms involving [h]2n+1, are

to be considered only if [h]2n+1 > 0. Moreover

∀n ∈ N, ∀x, y ∈ No, x < y →

{
exp(x)[y − x]n < exp(y)

exp(y)[x− y]2n+1 < exp(x)
(Exp.Ord)
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Proof. We procede by induction: assuming exp | : Noα → No is defined and Exp.Ord holds restricted
to x, y ∈ Noα, we prove that the recursive relation allow us to define exp(x) for every x with le(x) = α
and that Exp.Ord holds up to Noα+1.
So let le(x) = α we need to prove that for every x it has to be x′, x′1, x′2 ∈ L(x), x′′, x′′1 , x′′2 ∈ U(x),
m,n ∈ N one has

exp(x′)[x− x′]n[x′′ − x]m < exp(x′′) exp(x′′)[x− x′′]2n+1[x′ − x]2m+1 < exp(x′)

[x− x′1]m exp(x′1) <
exp(x′2)

[x′2 − x]2n+1
[x− x′′1 ]2n+1 exp(x′′1) <

exp(x′′2)

[x′′2 − x]m

For m,n ∈ N and l = max(m,n)

exp(x′)[x− x′]n[x′′ − x]m ≤ exp(x′)[x− x′]l[x′′ − x]l ≤ exp(x′)[x′′ − x′]l < exp(x′′)

Similary if l = max(m,n) and p is large enough we have

exp(x′)[x′ − x]2n+1[x− x′′]2m+1 ≤ exp(x′)[x′ − x]2l+1[x− x′′]2l+1 < exp(x′)[x′ − x′′]2p+1 < exp(x′′)

In order to deduce the last two inequalities we first notice that for y, z ∈ S(x) the following facts hold

a) z < y < x→ ∀m ∈ N, ∃n ∈ N, ∀p > n, exp(z)[x− z]m < exp(y)[x− y]p

b) z < y < x→ ∀m ∈ N, ∃n ∈ N, ∀p > n, exp(y)
[x−y]2p+1

< exp(z)
[x−z]2m+1

c) x < y < z → ∀m ∈ N, ∃n ∈ N, ∀p > n, exp(z)[x− z]2m+1 < exp(y)[x− y]2p+1

d) x < y < z → ∀m ∈ N, ∃n ∈ N, ∀p > n, exp(y)
[y−x]p

< exp(z)
[z−x]m

a) pick n = 2m then for p ≥ n one has [x− z]m < [x− y]p[y − z]p hence

exp(z)[x− z]m < exp(z)[y − z]p[x− y]p < exp(y)[y − z]p

b) we know there is n such that for every p ≥ n one has [z − x]2m+1 < [z − y]2p+1[y − x]2p+1 hence

exp(y)[z − x]2m+1 < exp(z)[z − y]2p+1[y − x]2p+1 < exp(z)[y − x]2p+1

c) we know there is n such that for every p ≥ n one has [x− z]2m+1 < [x− y]2p+1[y − z]2p+1 hence

exp(z)[x− z]2m+1 < exp(z)[y − z]2p+1[x− y]2p+1 < exp(y)[x− y]2p+1

d) pick n = 2m then for p ≥ n one has [y − x]p[z − y]p ≥ [z − x]m hence

exp(y)[z − x]m < exp(y)[z − y]p[y − x]p ≤ exp(z)[y − x]p

Now setting x′3 = max(x′1, x
′
2) by (a) and (b) we have a for sufficently large p and by the fact [h]p[−h]p

exp(x′1)[x′1 − x]m ≤ exp(x′3)[x− x′3]p <
exp(x′1)

[x′3 − x]2p+1
≤ exp(x′2)

[x′2 − x]n

similarly setting x′′3 = min(x′′1 , x
′′
2), by (c) and (d) for sufficiently large p

exp(x′′1)[x− x′′1 ]2n+1 ≤ exp(x′′3)[x− x′′3 ]2p+1 <
exp(x′′3)

[x′′3 − x]m
≤ exp(x′′2)

[x′′2 − x]m

This proves that exp(x) is well defined for every x with le(x) ≤ α, we need to prove Exp.Ord. Notice
that this is trivial if one among x and y is an intial segment of the other, otherways consider t = x

s
∧ y,

then x < t < y, we thus get

exp(x)[y − x]n < exp(x)[t− x]2n[y − t]2n < exp(t)[y − t]2n < exp(y)

similarly for large enough p

exp(y)[x− y]2n+1 < exp(x)[t− x]2p+1[y − t]2p+1 < exp(t)[y − t]2p+1 < exp(y)

This concludes the proof.

Proposition 2.50. The above defined function exp satisfies the following properties
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i Uniformity: for every presentation x = (A|B) we have Exp.Rec holds also if we let x′ range in A
and x′′ in B.

ii for every r ∈ R we have exp(r) = er.

iii for every ε ∈ o(1) and every r ∈ R we have

exp(r + ε) = exp(r)
∑
n∈N

εn

n!

iv for every j ∈ J and every finite f one has exp(j + f) = exp(j) exp(f)

Proof. i. we immediately notice that for x′ ∈ A and x′′ ∈ B we still have that exp(x) satisfies the
betweenness property by Exp.Ord. Thus we only need to prove cofinality of the presentation with x′
ranging in A and x′′ ranging in B in the defining presentation exp(x). This follows from the fact (A,B)
is cofinal in (L(x),U(x)) by Proposition 2.19 and that by Exp.Ord

x′ 7→ exp(x′)[x− x′]n x′′ 7→ exp(x′′)[x− x′′]2n+1

x′ 7→ exp(x′′)

[x′′ − x]n
x′′ 7→ exp(x′)

[x′ − x]2n+1

are all increasing functions.
ii. We immediately notice that exp(0) = {0}|∅ = 1. We now prove by induction on length that for
dyadic fractions exp(r) = er: by inductive hypothesis we easily see that er satisfies the in betweenness
property

exp(r′)[r − r′]n = er
′
[r − r′]n < er er <

exp(r′′)

[r′′ − r]n
=

er
′′

[r′′ − r]n

exp(r′′)[r − r′′]2n+1 = er
′′
[r − r′′]2n+1 < er er <

exp(r′)

[r′ − r]2n+1
=

er
′

[r′ − r]2n+1

To see cofinality notice that if r > 0 we can fix r′ = 0 and get lower terms of the form [r]n and
upper terms of the form [r]2n+1: now since by the inductive hypothesis all elements in the defining
presentation of exp(r) are real, and er is separating to conclude it suffices to notice

lim
n→∞

[r]n = er = lim
n→∞

1

[−r]2n+1

A similar reasoning can be done for the case r < 0 setting r′′ = 0 and using [−r]n and [r]2n+1.
Finally notice that the case of a general r ∈ R follows similarly, as for all elements in R the in
betweenness property still is satisfied and the cofinality parts holds because initial segments of reals
are dyadic fractions.

iii. Let us set for notational commodity ε ∈ o(1), eε =
∑
n∈N

εn

n!
. We divide the proof into steps.

Step 1 : we prove that for ε ∈ o(1) \ {1} in the recursive definition of exp(r + ε) in terms of S(r + ε)
we can restrict to elements of S(r + ε) which have the form r + ε̃. First notice that all elements of
S(r + ε) are finite. Next observe that if δ ∈ o(1) and s ∈ R are such that s+ δ ≤s r + ε, then

s < r →


<
(

exp(s+ δ)[r − s+ ε− δ]n
)

= exp(s)[r − s]n < exp(r)

<
(

exp(s+ δ)

[s− r + δ − ε]2n+1

)
= exp(s)[r − s]2n+1 > exp(r)

s > r →


<
(

exp(s+ δ)[r − s+ ε− δ]2n+1

)
= exp(s)[r − s]2n+1 > exp(r)

<
(

exp(s+ δ)

[s− r + δ − ε]n

)
= exp(s)[r − s]n < exp(r)

where <(−) denotes the real part. it follows that terms of the recursive presentation of exp(r + ε)
coming from y ∈ S(r + ε) with <(y) 6= r can be omitted by cofinality (we are using r <s r + ε).
Step 2 : Notice that for infinitesimal ε, δ one has that eεeδ = eε+δ because the equality holds at the
level of formal sums.
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Step 3 : Under the inductive hypothesis that for elements in r+ ε̃ ∈ S(r+ ε) one has exp(r+ ε̃) = ereε̃

we have that ereε satisfies the betweenness condition.

ε′ < ε→


exp(r + ε′)[ε− ε′]n = ereε

′
[ε− ε′]n < ereε

′
eε−ε

′
= ereε

exp(r + ε′)

[ε′ − ε]2n+1
=

ereε
′

[ε′ − ε]2n+1
> ereε

′
eε−ε

′
= ereε

ε < ε′′ →


exp(r + ε′)[ε− ε′′]2n+1 = ereε

′
[ε− ε′′]2n+1 < ereε

′
eε−ε

′
= ereε

exp(r + ε′′)

[ε′′ − ε]n
=

ereε
′′

[ε′′ − ε]n
> erereε

′′
eε−ε

′′
= ereε

Step 4 : Again under the same inductive hypothesis, let x = r+ ε =
∑
i<α riω

ai , that is r = r0, a0 = 0

and (ai)i<α decreasing. We prove that for every ωb ∈ S(er0ex−r0), we have that there is n ∈ N and β
such that said y =

∑
i<β riω

ai and z = x− y one has

| exp(y)ez − exp(y)[z]n| ≺ ωb
∣∣∣∣exp(y)ez − exp(y)

[−z]n

∣∣∣∣ ≺ ωb
We have that b =

∑n−1
j=0 aij for some finite sequence (ij)

n−1
j=0 in α, hence setting β such that aβ =

min{aij : 0 ≤ j < n} we get b ≥ naβ , so it happens that

lm
(

exp(y)ez − exp(y)[z]n
)

= lm

exp(y)
∑

k≥n+1

zk

k!

 = lm(zn+1) = ω(n+1)aβ ≺ ωb

lm

(
ez − 1

[−z]n

)
� lm

(
e−z − 1

[−z]n

)
Now on y we may apply the inductive hypothesis and get exp(y)ez = exp(r) exp(y − r)ez = exp(r)eε.
Thus we get that {exp(y)[z]n : y ∈ L(x), n ∈ N} is cofinal in {exp(r)eε|ωb + ωbq : b ∈ S(exp(r)eε), q <
...}, the other cofinality statements are proved in a similar way.
iv. Again we proceed by steps.
Step 1 : in the defining presentation of x = j + f in terms of S(j + f) we can restrict to the terms
coming from elements of S(j + f) of the form j + f̃ with f̃ finite: in fact if |x− x̃| � 1 is infinite one
has

x̃ < x→


exp(x̃)[x− x̃]n ≺ exp(x̃)[x− x̃]n+1 < exp(x)

exp(x̃)

[x̃− x]2n+1
� exp(x̃)

[x̃− x]2n+3
> exp(x)

x̃ > x→


exp(x̃)[x− x̃]2n+1 ≺ exp(x̃)[x− x̃]2n+3 < exp(x)

exp(x̃)

[x̃− x]n
� exp(x̃)

[x̃− x]n+1
> exp(x)

whereas if x− x̃ is finite then exp(x̃)[x− x̃] � exp(x̃) and hence in this case exp(x̃) � exp(x).
Step 2 : assuming the inductive hypothesis true for every j + f̃ ∈ S(j + f) we get that a presentation
of exp(j + f) with typical terms

exp(j + f̃)[f − f̃ ]n = exp(j) exp(f̃)[f − f̃ ]n
exp(j + f̃)

[f̃ − f ]n
= exp(j)

exp(f̃)

[f̃ − f ]n

where f̃ <s f , this means that we have a representation exp(j + f) =
(

exp(j)F
∣∣ exp(j)G

)
where

exp(f) = (F |G) is the defining representation of exp(f) in terms of S(f).
Step 3 : At this point, said exp(j) = (H|K) the defining representation of exp(j) we want to prove that(

exp(j)F
∣∣ exp(j)G

)
= (H|K)(F |G) by confinality.

First we see that since j ∈ J we have H ≺ exp(j) ≺ K. Then we see exp(f) − exp(f̃)[f − f̃ ]n �
exp(f̃)

(
[f − f̃ ]n+1 − [f − f̃ ]n

)
exp(j) exp(f̃)[f − f̃ ]n + h(exp(f)− exp(f̃)[f − f̃ ]n) <

< exp(j) exp(f̃)[f − f̃ ]n + exp(j) exp(f̃)
(
[f − f̃ ]n+1 − [f − f̃ ]n

)
=

= exp(j) exp(f̃)[f − f̃ ]n+1

and other similar inequalities allow to conclude cofinality.
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Proposition 2.51. If x ∈ J then exp(x) ∈M moreover

exp(x) =

{
0, exp(x′)(x− x′)n

}∣∣∣∣{ exp(x′′)

(x′′ − x)n

}
where x′ ranges in the purely infinite lower initial segments of x, and x′′ in the purely infinite upper
initial segments of x′′.

Proof. First notice that if x is purely infinite and x̃ ≤s x then |x − x̃| � 1 is infinite, hence no
terms of the [z]2n+1 arise in the inductive representation. On the other hand, for the same reason
[x − x′]n ≺ (x − x′)n+1 and [x′′ − x]n ≺ (x′′ − x)n+1, so by cofinality we can raduce to terms of the
above form with x′ and x′′ ranging amond respetively lower and upper initial segments of x. Let us
prove that we can further restrict x′ and x′′ to the purely infinite initial segments. This is because if
x̃ = j + f ≤s x with f finite and j ∈ J, then one has that

x̃ < x→ exp(x̃)(x̃− x)n = exp(j) exp(f)(x̃− x)n � exp(j)(j − x)n ≺ exp(j)(j − x)n+1

x̃ > x→ exp(x̃)

(x̃− x)n
=

exp(j) exp(f)

(x̃− x)n
� exp(j)

(j − x)n
� exp(j)

(j − x)n+1

Finally exp(j) ∈ M follows immediately from the fact that for for every x′ ∈ L(x), x′′ ∈ U(x) and
n,m ∈ N

(x− x′)m exp(x′) ≺ (x− x′)m+1 exp(x′) < exp(x) <
exp(x′′)

(x′′ − x)n+1
≺ exp(x′′)

(x′′ − x)n

hence exp(x) is the simplest element of a union of archimedean classes.

Proposition 2.52. If x and y are both purely infinite then exp(x+ y) = exp(x) exp(y).

Proof. We prove this by induction on le(x)⊕ le(y). We can build a representation of exp(x+ y) with
typical lower terms{

0, exp(x+ y′)(y − y′)n, exp(x+ y′)(x− x′)m
}∣∣∣∣{exp(x+ y′′)

(y′′ − y)n
,

exp(x′′ + y)

(x′′ − x)m

}
with x′, x′′ ∈ S(x), y, y′′ ∈ S(x), x′ < x < x′′, y′ < y < y′′, n,m ∈ N.
We show that these are cofinal in the terms of the presentation of exp(x) exp(y) arising from the
definition of product

• for lower terms of the form exp(x′) exp(y)(x−x′)n+exp(x) exp(y′)(y−y′)m−exp(x′) exp(y′)(x−
x′)n(y − y′)m we have by inductive hypothesis and easy estimates

exp(x′) exp(y)(x− x′)n + exp(x) exp(y′)(y − y′)m − exp(x′) exp(y′)(x− x′)n(y − y′)m ≤

≤ exp(x′+y)(x−x′)n+exp(x+y′)(y−y′)m ≤ max{exp(x′+y)(x−x′)n+1, exp(x+y′)(y−y′)m+1}

• lower terms of the form

exp(x′′) exp(y)

(x′′ − x)n
+

exp(x) exp(y′′)

(y′′ − y)m
− exp(x′′) exp(y′′)

(x′′ − x)n(y′′ − y)m

are easily seeen to be negative by an order of magnitude argument

• upper terms are, w.l.o.g. (that is up to exchanging x and y) of the form

exp(x′) exp(y)(x− x′)m +
exp(y′′) exp(x)

(y′′ − y)n
− exp(y′′) exp(x′)(x− x′)m

(y′′ − y)n

notice that
exp(y′′) exp(x)

(y′′ − y)n
� exp(x′) exp(y′′)

(x− x′)m

(y′′ − y)n
hence

exp(x′) exp(y)(x− x′)m +
exp(y′′) exp(x)

(y′′ − y)n
− exp(y′′) exp(x′)(x− x′)m

(y′′ − y)n
≥

exp(y′′) exp(x)

(y′′ − y)n
− exp(y′′) exp(x′)(x− x′)m

(y′′ − y)n
≥ exp(y′′) exp(x)

(y′′ − y)n+1
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This concludes the cofinality argument.

Theorem 2.53. The function exp : No→ No is a positive exponential function.

We now prove that exp | : J→M = ωNo is surjective defining an inverse.

Proposition 2.54. There is one and only one function ln : ωNo → J ⊆ No satisfying the recursive
relations

ln(ωx) =
{

ln(ωx
′
) + n, ln(ωx

′′
)− ω

x′′−x
n

} ∣∣∣∣ {ln(ωx
′′
)− n, ln(ωx

′
) + ω

x−x′
n

}
as x′, x′′ and n range in L(x), U(x) and N \ {0} respectively. Moreover

∀x, y ∈ No,∀n ∈ N x < y → 1 ≺ ln(ωy)− ln(ωx) ≺ ω
y−x
n (Ln.Conv)

Proof. We prove by induction on α that ln(ωx) is defined for x ∈ Noα+1 and that for every x, y ∈ Noα,
Ln.Conv holds.
Let us prove the required inequalities in the terms of the defining representation

• ln(ωx
′
) + n < ln(ωx

′′
) +m because ln(ωx

′′
)− ln(ωx

′
) � 1.

• ln(ωx
′
0) +m < ln(ωx

′
1) + ω

x−x′1
n because even if x′1 < x′0 one has

0 < ln(ωx
′
0)− ln(ωx

′
1) < ω

x′0−x
′
1

n ≺ ω
x−x′1
n −m

• similarly ln(ωx
′′
0 )− ω

x′′−x
n < ln(ωx

′′
1 )−m becasue even if x′′1 < x′′0

0 < ln(ωx
′′
0 )− ln(ωx

′′
1 ) < ω

x′′0−x
′′
1

m ≺ ω
x′′0−x
n −m

• finally ln(ωx
′′
)− ω

x′′−x
n < ln(ωx

′
) + ω

x−x′
n because

ln(ωx
′′
)− ln(ωx

′
) < ω

x′′−x′
m < ω

x′′−x
m + ω

x−x′
m

It remains to prove Ln.Conv up to Noα+1: consider x < y ∈ Noα+1, if x and y are related by simplicity
then this is obvious from the inductive representation, otherwise set z = x

s
∧ y, so that x < z < y then,

using again the representations for every n ∈ N \ {0}

ln(ωy)− ln(ωx) >
(

ln(ωz) + n
)
−
(

ln(ωz)− n
)

= 2n

ln(ωy)− ln(ωx) <
(

ln(ωz) + ω
y−z
n

)
−
(

ln(ωz)− ω
z−x
n

)
= ω

y−z
n + ω

z−x
n ≺ ω

y−x
n

This concludes the proof.

Theorem 2.55. The above defined ln is a compositional inverse of exp | : J→M.

Proof. See [6], Theorem 10.9.

Then one can extend the definition of ln to No>0 decomposing a positive x ∈ No as x = mr(1 + ε,
withm = lm(x), r = lc(x) ∈ R>0, |ε| ≺ 1 and setting

ln(x) = ln(m) + ln(r) +
∑
k≥1

(−1)k−1εk

k

That way one gets a ln : No>0 → No, which is a compositional inverse of exp. One also gets the
anticipated result that G = Ω−1 ◦ exp | : J → No is strongly linear and monomial (i.e. preservses
infinite sums and sends monomials into monomials).

Theorem 2.56. The function G : J → No defined as5 G = Ω−1 ◦ exp | is strognly linear and has the
form G = idR((Ω(g))) for g : No>0 → No a surjective increasing function that satisfies the inductive
relation

g(x) =
((

Ω−1 ◦ lm(x) ∪ g(L(x))
))
g(U(x))

)
Proof. See [6], Theorems 10.11 and 10.13.

5 Ω is just Conway’s omega written in a prefix notation, i.e. the map Ω(x) = ωx
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2.7 Application to Transseries
It has been shown in [4], that transseries can be embedded into surreal numbers so to preserve infinite
sums, exponentials and logarithms, moreover it is possible to define the embedding so that the base
parameter x of the field of transseries is sent into any positive purely infinite surreal of such that all of
its iterated logarithms are purely infinite: one calls such numbers log-atomic numbers.

Definition 2.57. A log-atomic number is a positive purely infinite surreal x ∈ J with the property
that for every n ∈ N, its n-fold iterated logarithm logn(x) is defined and still is purely infinite, or
equivalently that logn(x) is a monomial for every n.

The idea is that one can build copies of the various T (m,n) in such a way that all maps become
inclusions, otherwise stated there is a natural transformation (i.e. a cone) T (m,n)⇒ No.

Construction 2.58. Define inductively maps

fn,λ : Kn ↪→ No nn,λ : Nn ↪→M mn,λ : Mn ↪→M

as follows: f−1,λ, m−1,λ and n−1,λ are the obvious inclusions respectively from K−1 = R, M−1 = 1 and
N−1 = 1, then define n0,λ as

n0,λ : N0 →M n0,λ(tr) = exp(ln(λ)r)

finally for n ≥ 0 define

fn,λ = idR((mn,λ)) : Kn ∼= R((Mn))→ R((M)) ∼= No

nn+1,λ = exp ◦fn,λ ◦ (E)−1 : Nn+1 → Jn → J→M

mn+1,λ =
[
mn,λ nn+1,λ

]
: Mn+1 =

Mn

�
Nn+1

→M

Remark 2.59. One could also have defined directly transseries into surreals, as the images Kn,λ =
fn,λKn satisfy the following relations hold

K−1,λ = R N0,λ = exp
(
R ln(λ)

)
Kn,λ = Kn−1,λ

((
Nn,λ

))
Nn+1,λ = exp

(
Kn,λ

((
N>1
n,λ

)))
Lemma 2.60 ([4], Lemma 4.14). Jn,λ is a well defined R-subspace of J, and Jn+1,λ > Jn,λ

Lemma 2.61 ([4], Lemma 4.16). For all n ∈ N one has

exp(Kn,λ) ⊆ Kn+1,λ Kn,λ ⊆ Kn+1,ln(λ) log(K>0
n,λ) ⊆ Kn+1,ln(λ)

Definition 2.62. Set
TLn,λ =

⋃
k≥−n

Kn+k,logk(λ) TEλ =
⋃
k∈N

Kk,λ

TELλ =
⋃
n,m

Kn,logm(λ) =
⋃
n

TLn,λ =
⋃
m

TElogm(λ)

Each TELλ is an isomorphic image of TEL.

Fact 2.63. For every n ∈ N one has that lnn(ω) = ωω
−n

= Ω(Ω(−n)).

Proof. It follows inductively from the fact that exp ◦Ω = Ω ◦G ◦ Ω = Ω ◦ Ω ◦ g so

exp(ωω
−n

) = exp ◦Ω(ω−n) = Ω ◦ Ω ◦ g(ω−n) = ωω
−n+1

if n ≥ 1

for it is known that g(ω−n) = −n+ 1 for n ∈ N \ {0} (see [6] Theorem 10.15).

Remark 2.64. From the fact above it follows that the field of transseries TELω is not closed under Ω,
as

1 ≺ ωω
−ω

= Ω(Ω(−ω)) ≺ lnn(ω)

for every n, hence it cannot be Ω(Ω(−ω)) ∈ TELω as lnn(ω) is coinitial in the group
(
MEL
ω

)>1 of
monomials of TELω .
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2.7.1 Rereading the isomorphism JLn,λ ' KL
n,λ

It could be useful to reread the proof of Proposition 1.101 regarding transseries as embedded into Sur-
reals. We take this opportunity to write the proof in a more discursive fashion without the use of the
β((a)) notation. A perk of this approach is that we can regard h as a chain isomorphism h : No→ No
defined by a formula, so that h(K) = K>0 for every subfield K, and such that h(1) = 1.
A relative disadvantage, instead, is that we need to define several version of the maps γn, each corre-
sponding to a version fn,λ : Kn,λ → Jn,λ of this map.

Construction 2.65. We define a family of ordered abelian groups isomorphism fn,λ : Kn,λ → J̃n,λ
inductively as follows. The base case is

f−1,λ : K−1,λ = R→ J−1,λ = R log(λ) f−1,λ(r) = log(λ)r

Then the idea again is to use the ordered abelian group isomorphism fn,λ : Kn,λ → Jn,λ to define a
chain isomorphism

f>0
n,λ ◦ h ◦ f

−1
n,λ : Jn,λ → J>0

n,λ

It is not difficult to see that this is well defined: first we see that h restricts to a chain isomorphism
Kn,λ → K>0

n,λ, then we observe that since fn,λ is an ordered abelian group isomorphism it restricts to
an order isomorphism of the positive cones f>0

n,λ : K>0
n,λ → J>0

n,λ. So analogously to the definition of γn
one can set

fn+1,λ : Kn+1,λ → J̃n+1,λ idKn
((

exp ◦fn,λ ◦ h ◦ f−1
n ◦ log

))
This means the following: an element of x ∈ Kn+1,λ can be written uniquely as

x =
∑
i<α

ki exp(ji) ki ∈ Kn,λ \ {0} ji ∈ Jn,λ

with {ji : i < α} strictly increasing, then fn+1,λ(x) is

fn+1,λ(x) =
∑
i<α

ki exp
(
fn,λ ◦ h ◦ f−1

n,λ(ji)
)
∈ Jn+1,λ (2.1)

It is easy to see that fn+1,λ is an ordered abelian group isomorphism as well.

Proposition 2.66. For the above defined fn,λ we have

Kn,λ
fn,λ

//
� _

��

	

Jn,λ� _

��

Kn+1,log(λ)

fn+1,log(λ)
// Jn+1,λ

Proof. We proceed by induction. Case n = −1 is the following, let r ∈ R = K−1,λ, then clearly
f−1,λ = log(λ)r by definition. Let us compute f0,log(λ)(r): one has r = r · 1 = r exp(0), hence we first
need to compute (

f−1,log(λ) ◦ h ◦ f−1
−1,log(λ)

)
(0) =

(
f−1,log(λ) ◦ h

)
(0) = log2(λ)r

Thus we have f0,log(λ)(r) = r exp(log2(λ)) = r log(λ).
New let us come to the inductive step: assume the diagram in the statement commutes, we want to
show that the one obtained replacing n with n+ 1 commutes as well. Let us take

Kn+1,λ 3 x =
∑
i<α

ki exp(ji) ki ∈ Kn,λ \ {0} ji ∈ Jn,λ

we need to show that fn+1,λ(x) of Equation 2.1 equals fn+2,log(λ)(x). In order to compute it notice
the rewriting of x above is valid also in order to compute fn+2,log(λ)(x) inductively because Kn,λ ⊆
Kn+1,log(λ) and Jn,λ ⊆ Jn+1,log(λ), thus

fn+2,log(λ)(x) =
∑
i<α

ki exp
(
fn+1,log(λ) ◦ h ◦ f−1

n+1,log(λ)(ji)
)

(2.2)

Hence in order for fn+1,λ(x) = fn+2,log(λ)(x) to hold it suffices that

fn+1,log(λ) ◦ h ◦ f−1
n+1,log(λ)(y) = fn,λ ◦ h ◦ f−1

n,λ(y)
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for every y ∈ Jn,λ. This follows trivially from the inductive hypothesis:

f−1
n+1,log(λ)(y) = f−1

n,λ(y)⇒ h ◦ f−1
n+1,log(λ)(y) = h ◦ f−1

n,λ(y)⇒

⇒ fn+1,log(λ) ◦ h ◦ f−1
n+1,log(λ)(y) = fn,λ ◦ h ◦ f−1

n,λ(y)

Remark 2.67. The fn,λ cannot be glued along the inclusions Kn,λ ⊆ Kn+1,λ as Jn,λ ∩ Jn+1,λ = 0.
Notice that even though fn,log(λ) ⊆ fn+1,log(λ), the inductive definition of the latter is not based on
the former, but on fn,log(λ).
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